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Abstract

This paper rationalizes the LASSO algorithm based on uncertain fat-tail priors and
max-min robust optimization. Our rationalization excludes heuristic learning or restric-
tive prior assumptions in the original interpretation of LASSO (Tibshirani (1996)). In
our setting, economic agents (arbitrageurs) face ambiguity about fat-tail shocks and in
equilibrium, they ignore a reasonable range of ambiguous signals but respond linearly
to almost unambiguous signals. With this LASSO equivalent strategy, arbitrageurs can
amass extra market power which induces a “cartel” to protect their aggregate profit
from being competed away. This result shows a new mechanism for limited arbitrage.
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1 Introduction

Machine learning techniques have been widely used in economics and finance to make

predictions, classifications, or decisions based on sample data (Jordan and Mitchell (2015),

Athey (2018), Nagel (2021), and Hastie, Tibshirani, Friedman, and Friedman (2009)). Most

machine learning tools were developed in the fields of statistics and computer science. They

have been proven by extensive applications to be superior in prediction accuracy and compu-

tational efficiency. Nonetheless, there are two important economic questions to be addressed:

(1) Are machine-learning methods rational choices for economic agents? (2) What would

happen if machine learning becomes a new doctrine in financial markets? Answering these

questions may generate new insights into topics in asset pricing and risk management.

In this paper, we rationalize a widely used machine learning algorithm, the Least Absolute

Shrinkage and Selection Operator (LASSO), invented by the renowned statistician Robert

Tibshirani in 1996. It is a linear regression with an l1 norm penalty term in its loss function.

This term is critical for the LASSO to achieve both variable selection and shrinkage. A

simple explanation for the l1-penalty is the argument of Occam’s Razor or the principle of

parsimony, akin to behavioral economics. A statistical interpretation proposed by Tibshirani

(1996) is that the LASSO can be derived using the maximum a posteriori (MAP) estimate

under a Laplace (double exponential) prior on the estimated parameter. Yet, this is not

Bayesian rational. The MAP estimate is a heuristic learning rule as it uses the posteriormode

as the point estimate, without integrating all the useful posterior information. Tibshirani’s

interpretation is also restrictive, as it only works with a pure and fixed Laplace prior.

As a concrete economic setting, we develop a model of arbitrage trading to demonstrate

that the LASSO algorithm can be an equilibrium strategy chosen by Bayesian-rational agents

(traders) when they have uncertain fat-tail priors (model risk). Our derivation of the LASSO

strategy does not rely on a heuristic (MAP) learning rule or the restrictive assumption of a

pure and fixed Laplace prior. Thus, our theory provides the first economic rationale for the

LASSO algorithm. Our interpretation highlights the robustness of LASSO which stems from

the endogenous inaction region chosen by agents to ignore directionally ambiguous signals.

This sacrifices little optimality because agents still respond in a nearly optimal manner to the

directional, most profitable signals. We also find that the robust LASSO strategy enables

agents to amass extra market power that protects their aggregate profit even when their

population approaches infinity. This is a novel channel for inefficient markets.

LASSO and its variants have been extensively used in financial studies. Rapach, Strauss,

and Zhou (2013) apply the LASSO to study lead-lag relationships among monthly interna-

tional stock returns. Goto and Xu (2015) use the graphical LASSO algorithm to solve a
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sparse estimator of the inverse covariance matrix in mean-variance portfolio optimization.

Chinco, Clark-Joseph, and Ye (2019) apply the LASSO to select short-term predictors and

forecast individual stock returns one-minute ahead, given cross-sectional returns over the

past few minutes. Gu, Kelly, and Xiu (2020) apply a zoo of machine learning tools, includ-

ing the LASSO, to study the time-series predictability of monthly individual stock returns.

Freyberger, Neuhierl, andWeber (2020) apply the adaptive group LASSO to identify the rela-

tionships between numerous firm characteristics and cross-section of expected stock returns.

Kozak, Nagel, and Santosh (2020) utilize the elastic net, a variant of LASSO, to construct

a robust stochastic discount factor which integrate the explanatory power of a large number

of cross-sectional return predictors. Dong, Li, Rapach, and Zhou (2022) employ a variety of

LASSO-related shrinkage techniques to extract predictive signals from long-short anomaly

portfolio returns in a high-dimensional setting. Huang and Shi (2022) apply the adaptive

group LASSO to government bonds and construct a macro factor based on 30 predictors.

There are limited theoretical studies about LASSO in economics. Gabaix (2014) develops

a sparsity model, in the spirit of LASSO, for the anchoring-and-adjustment bias (Tversky

and Kahneman (1974)) and the limited attention (Sims (2003)). Martin and Nagel (2022)

develop an equilibrium model to study cross-sectional return predictability due to sparsity

or shrinkage when investors face a high-dimensional prediction problem. Both papers view

the LASSO as a result of bounded rationality, agreeing with Tibshirani’s interpretation.

The MAP method uses the posterior mode (instead of the mean) as the point estimate.

It can lose applicability when uncertainty about the prior parameter(s) arises. In general, a

rational agent will not directly use the MAP estimate as it overlooks valuable information.

Tibshirani’s interpretation of LASSO requires the prior to be a pure and fixed Laplace

distribution which has a sharp peak at the origin and enables the MAP learning rule to

generate sparse solutions. Yet this prior assumption is often unverified in real applications.

It is unclear how relevant the Laplace prior is in many applications of LASSO. If this prior

is just an approximation, it is still unclear how good the approximation is or whether model

uncertainty matters. The Laplace distribution is found useful to fit the data of stock returns.1

It is difficult to justify that the Laplace prior holds in general, especially when our prior

knowledge is vague. If the validity of LASSO hinges on a fixed and pure Laplace prior, then

it may work under certain circumstances but cause unexpected problems in other conditions.

The fact that the MAP learning is heuristic does not exclude the possibility of a Bayesian

rational explanation of LASSO. Why is it important to look for an economic rationale for a

simple algorithm? As a humble answer, it is at least pedagogical. There is no such theoretical

work in the literature, perhaps for two reasons:

1See Mantegna and Stanley (1999), Lillo and Mantegna (2000), Silva, Prange, and Yakovenko (2004)
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1. The MAP-based interpretation theoretizes the LASSO as a scientific tool with Bayesian

logic and hence lend support to its mathematical legitimacy. This is undoubtedly the

merit of Tibshrina’s contribution. As a result, LASSO users may not examine its

economic legitimacy and some fundamental issues may have been shadowed by the

glory of LASSO’s power. This is not an unusual example. We have been endowed with a

large library of machine learning tools. The literature also gives us abundant statistical

knowledge about them. Nonetheless, we seem to have only meager understanding as

to whether and why those tools are economically sensible to begin with. A similar

phenomenon, as noted by McQueen and Vorkink (2004), is in the literature of statistical

models of volatility clustering, such as the autoregressive conditional heteroskedasticity

(ARCH) model (Engle (1982)) and the generalized ARCH model (Bollerslev (1986)).

The popularity of using these models stems from their power of fitting the data. Yet,

“our theoretical knowledge of why volatility clusters is paltry”.

2. Different fields have developed different systems of topics, methods, and standards. For

example, the MAP estimate is taught in most statistics and machine learning textbooks

but rarely mentioned in economics or finance textbooks. This kind of difference can

delay scientific discoveries and call for interdisciplinary efforts. As another implication,

the financial industry has hired many quants with strong training in math, physics, and

engineering. The similar background may reinforce the quant mindset and sometimes

hamper economic thinking. This may build up systemic risks, as probably exemplified

by the quant meltdown in 2007 (Khandani and Lo (2011), Mussalli (2018)).

That is why we need theoretical research at the interface between machine learning and

financial economics. The emerging literature leans toward a behavioral perspective (Gabaix

(2014), Mullainathan and Spiess (2017), and Camerer (2018)). This does not preclude the

possibility of a rational theory. For example, can the LASSO method ever be an equilibrium

strategy? If no, then there should exist profitable deviations which may lead to improvements

of the LASSO. If yes, then this sounds new and needs to be formally addressed.

Our theory proves the rational choice of the LASSO in an economically meaningful setup.

We propose general questions at the beginning, but to address those questions, we need a

concrete setting to specify the objective functions of agents and define the equilibrium. This

approach has several benefits. First, the general audience can have a better understanding

of the reasoning and mechanism when the economic setting is clearly defined. We can deliver

generic intuitions through specified models. Moreover, this allows us to perform normative

analysis of such issues as the performance of strategies, market stability, and price efficiency.

Our insight is based on the robustness of LASSO. The machine learning literature treated
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robustness as a secondary property of LASSO (Hastie, Tibshirani, and Wainwright (2015)).

It can be “theoretized” by altering the loss function for the estimation problem (Xu, Carama-

nis, and Mannor (2008)). This approach is widely adopted in statistics but not economically

grounded. For example, the MAP rule can be “theoretized” by the “hit-or-miss” loss func-

tion (Robert et al. (2007) [p. 166]), but this does not rationalize it. To prove an economic

rationale for a machine-learning method, we have to formulate standard utility functions

that agents optimize, rather than twisting the loss function to alter their learning rules.

The robustness of LASSO stems from its finite inaction zone which may drop ambiguous

signals and keep unambiguous ones. This can be an economic reason for using the LASSO: if

agents are uncertain about the direction of some fat-tailed signals, they may only respond to

strong signals and ignore vague ones. This can avoid betting on the wrong side and suffering

from fat-tailed losses. To formalize our intuition, we develop a model that incorporates two

related features: uncertain fat-tail priors and robust optimization. Both issues are highly

relevant to the trading of arbitrageurs in financial markets.

Specifically, we design a trading model where ambiguity-averse arbitrageurs predict and

exploit pricing errors caused by random fat-tail shocks. We use a general Gaussian-Laplacian

mixture distribution for the stock value. With a linear pricing rule,2 random fat-tail shocks

can produce disproportionate pricing errors, the frequency and magnitude of which are tuned

by the mixing weight and the fat-tail scale parameter, respectively. Arbitrageurs are uncer-

tain about the scale parameter. Each of them makes robust trading decisions by optimizing

the max-min expected utility, as axiomatized by Gilboa and Schmeidler (1989).

We show that the equilibrium robust strategy chosen by arbitrageurs is equivalent to the

LASSO estimate of pricing errors, conditional on the order flow (or the price change) observed

in a time window right before their trading. Specifically, the strategy has an endogenous

threshold inversely related to the averaged scale of fat-tail shocks but independent of their

frequency, whereas the response intensity beyond the inaction zone is proportional to the

frequency but independent of the scale parameter. Thus, under fairly general conditions,

we show that the use of LASSO is a Bayesian rational strategy optimally chosen by agents

who are concerned about fat-tailed model risks. This economic interpretation does not use

any heuristic learning rule, nor make the restrictive assumption of a pure and fixed Laplace

prior, which is an extreme case of our assumed general mixture distribution.

2The empirical price impact function, which measures the average price change in response to the size of
an incoming order, is sublinear with some concavity. See Loeb (1983), Grinold and Kahn (2000) [p. 453],
Gabaix, Gopikrishnan, Plerou, and Stanley (2006), and Kyle and Obizhaeva (2016). The linear pricing rule
can be endogenized in multi-period Kyle-type models (e.g., Kyle (1985), Holden and Subrahmanyam (1992),
Foster and Viswanathan (1994, 1996)) by assuming that market makers adhere to the Gaussian belief or
restrict their considerations to linear pricing strategies perhaps for simplicity and robustness.
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We also find that the robust LASSO strategy can outperform the optimal benchmark

strategy, a nonlinear smooth response, which ignores the model risk and optimizes the sub-

jective expected utility.3 The benchmark strategy is highly susceptible to the bias of estima-

tion and to the competition among traders. This easily loses profits if the estimate deviates

from the true prior or if the number of competitors increases. In contrast, the performance of

the LASSO strategy is robust to the estimate bias because its inaction zone avoids small but

frequent mistakes. More importantly, its performance is much less sensitive to traders’ com-

petition. Even as the number of arbitrageurs goes to infinity, their aggregate profit does not

vanish but converges to a positive level. This is a “cartel” effect induced by the under-trading

(shrinkage) of the LASSO strategy. Its conservativeness mitigates traders’ competition, al-

lowing them to accumulate extra market power to protect their aggregate profit from being

competed away. Consequently, even an infinite number of them can act as if a monopolist

buys or sell the asset at a better price than the fair one. This seemingly collusive behavior

does not involve any trading or financial constraints, nor require any communication device

or explicit agreement. The “cartel” is facilitated tacitly by traders’ uncoordinated exercise

of risk management. Therefore, our results reveal a novel channel for limits to arbitrage.

Our two-period model describes a market with short-lived and infrequent return pre-

dictability, consistent with the empirical findings of Chinco et al. (2019). Remarkably, Chinco

et al. (2019) apply the LASSO regression to select a small set of predictors from thousands

of candidate stocks. They acknowledge that “the LASSO identifies predictors that are not

easy to intuit.” By Tibshirani’s interpretation, their application of the LASSO is implicitly

assuming a Laplace prior on the predictive power (i.e., the regression coefficient) of each pre-

dictor. This assumption may be challenged for its empirical relevance. Our interpretation

can be trouble-free. An econometrician may form a general mixture prior on the predictive

power of each predictor in the context of Chinco et al. (2019). If she has little knowledge

about the scale of fat-tailed outliers, it can be reasonable to invoke a robust estimate (i.e.,

the LASSO regression) to shrink most ambiguous estimates to zero.

In our model, traders apply the LASSO estimate to the stock value, not to the stock’s

predictive power for other stocks. This differs from the application of LASSO in Chinco et al.

(2019). We follow the stylized fact that the distribution of stock returns has a sharp peak

with fat tails on both sides.4 It is error-prone to predict extreme events (e.g., Embrechts,

Klüppelberg, and Mikosch (2013)). This leads to model risks that can motivate traders to

implement robust optimization, voluntarily or mandatorily. Fat tails and model risks are

3In our setup, the MAP-based strategy differs from the LASSO strategy whenever the mixture prior is
not exactly Laplacian. This heuristic strategy is not an equilibrium outcome and can incur significant losses.

4See Fama (1963, 1965), Granger and Ding (1995), and Mantegna and Stanley (1999) for instance.
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the two empirically grounded foundations for our theory. By extending our setup to a large

number of stocks, we provide an intuitive explanation for the sparse, cross-sectional return

predictability documented in Chinco et al. (2019).

Our work attempts to bridge the gap between machine learning (e.g., the LASSO) and

neoclassical financial economics. The background model is inspired by the stylized fact of

fat tails in asset prices. Unexpected fat-tail shocks can cause temporarily inefficient prices.

This feature is embedded in the classic framework of Kyle (1985), which has been extended

by many others.5 By taking the max-min optimization criterion, our model incorporates

ambiguity aversion within the framework of Gilboa and Schmeidler (1989).6

Our results shed light on an interesting mechanism for limited arbitrage, directly caused

by the fat-tailed model risks. This can complement the existing literature which has studied

various market issues, such as short-selling costs, leverage constraints, and wealth effects.

Those frictions can directly limit arbitrageurs’ ability to trade; see the survey of Gromb

and Vayanos (2010) and the work of Shleifer and Vishny (1997), Xiong (2001), Abreu and

Brunnermeier (2002), Gabaix, Krishnamurthy, and Vigneron (2007), Kondor (2009), among

others. By excluding those frictions, our model is suited to highlight a mechanism that only

affects arbitrageurs’ willingness to trade. Specifically, it is the prior uncertainty about the

fat-tail scale that deters arbitrageurs from eliminating all possible mispricings. Furthermore,

their conservative trading, akin to the shrinkage property of LASSO, can mitigate their

competition and prevent the asset prices from being fully efficient even when the economy

hosts an infinite number of (risk-neutral) arbitrageurs.

Finally, the rational theory in this paper may be applied to various phenomena in be-

havioral economics, such as the status quo bias (Kahneman, Knetsch, and Thaler (1991)

and Samuelson and Zeckhauser (1988)) and limited attention (Sims (2003). Our theory may

rationalize some algorithmic traders who follow seemingly mechanical trading rules (Lewis

(2014)), similar to feedback traders who extrapolate price trends (DeLong, Shleifer, Sum-

mers, and Waldmann (1990), Barberis, Greenwood, Jin, and Shleifer (2015, 2018)).

The rest of this paper proceeds as follows. In Section 2, we discuss the background of

LASSO. In Section 3, we describe the model setup. In Section 4, we solve the equilibrium.

The main results are presented in Section 5, with extensions and applications in Section 6.

We make the concluding remarks in Section 7. All proofs are provided in the Appendix.

5See Back (1992), Holden and Subrahmanyam (1992), Foster and Viswanathan (1994, 1996), Vayanos
(1999, 2001), Back, Cao, and Willard (2000), Yang and Zhu (2020), among others

6See Schmeidler (1989), Dow and Werlang (1992), Hansen and Sargent (2001, 2008), Epstein and Schnei-
der (2008, 2010), Easley and O’Hara (2009, 2010), Illeditsch (2011), Banerjee, Davis, and Gondhi (2019).
While Klibanoff, Marinacci, and Mukerji (2005) propose a smooth preference model of decisions under am-
biguity, we adopt the kinked preference because it is compatible with the experimental results of Bossaerts,
Ghirardato, Guarnaschelli, and Zame (2010) and Ahn, Choi, Gale, and Kariv (2014).
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2 About the LASSO

We first discuss the definition and the original interpretation of the LASSO method (Tib-

shirani (1996)). LASSO can simultaneously perform variable selection and regularization. In

statistics and machine learning, regularization is a technical process that can help simplify

the solutions or models, for example, to obtain approximate solutions for ill-posed problems

or to prevent overfitting (Hastie et al. (2009)). While a heuristic argument for machine

learning can be the principle of parsimony or Occam’s razor, there is a more formal, statisti-

cal perspective which takes many regularization methods as equivalent to imposing certain

prior distributions on the model parameters. For example, the LASSO regression features

an l1 regularization, equivalent to imposing a Laplace prior in its objective function. This l1

penalty is critical for its ability to improve both prediction accuracy and model selection. In

contrasts, the ridge regression involves an l2 regularization which is equivalent to imposing

a Gaussian prior and thus lacks the ability of variable selection.

In its general form, LASSO is applied to a sample of I ≥ 1 pairs of predictor-response

observations, {xi, yi}Ii=1, where xi is a vector of J ≥ 1 covariates (independent variables).

After demeaning of the data, the LASSO estimates of v = (v1, ..., vJ) are defined by

v̂lasso := argmin
v

{
1

2I
∥y −X · v∥22 + ρ∥v∥1

}
, (1)

where y = (y1, ..., yI) is the I-vector of responses (dependent variables), X is an I×J covari-

ate matrix, and the positive scalar ρ is the l1 regularization parameter tuned exogenously.

Note that Equation (1) becomes the objective function of the classical OLS regression when

ρ = 0. Given any positive value of ρ, LASSO forces the sum of the absolute value of regres-

sion coefficients, ∥v∥1 =
∑J

j=1 |vj|, to be less than a fixed value. This l1 penalty forces many

insignificant coefficients of v to zero. It improves the prediction accuracy by sacrificing some

bias to mitigate the prediction errors. Also, LASSO can enhance the model interpretability.

It is able to reduce a seemingly high-dimensional prediction problem to a much simpler one,

with a sparse subset of coefficients that show the strongest effects.

The simplest version of LASSO corresponds to the setting of I = J = 1. Given a single

predictor-response pair {x1, y1}, the optimization problem (1) becomes

v̂lasso := argmin
v

{
1

2
|y1 − x1v|2 + ρ|v|

}
. (2)
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The solution to the above problem is given by

v̂lasso =


(x1y1 − ρ)/x2

1, if x1y1 > ρ,

0, if |x1y1| ≤ ρ,

(x1y1 + ρ)/x2
1, if x1y1 < −ρ.

(3)

This LASSO solution is closely related to the wavelet shrinkage method developed by Donoho

and Johnstone (1994). It is convenient to introduce and define the soft-thresholding operator:

S(y;K) = sign(y)max(|y| −K, 0) = [y − sign(y)K]1|y|>K . (4)

Then the LASSO solution (3) can be concisely written as

v̂lasso = S(y1/x1; ρ/x
2
1) = S(y1; ρ/x1)/x1, (5)

where the estimation threshold is given by ρ/x1.

Tibshirani proposes that the LASSO can be viewed as the MAP (i.e., posterior mode) es-

timates when the linear regression coefficients have Laplace (i.e., double-exponential) priors.

For the simplest version (2), assume that the prior on v follows a Laplace distribution

fL(v) =
1

2ξ
exp

(
−|v|

ξ

)
. (6)

This density function is sharply peaked since its first derivative is discontinuous at zero.

It decays on both sides at the exponential rate ξ and has a raw kurtosis always equal to

6. The likelihood of observing extreme events under a Laplace distribution is much higher

than that under the Gaussian distribution with an identical variance. Based on the simple

linear regression model, y1 = x1ṽ + ũ1, where the noise ũ1 ∼ N (0, σ2
u) follows the Gaussian

distribution, we can apply Bayes’ rule to derive the posterior distribution of ṽ:

f(v|y1) =
f(y1|v)fL(v)

f(y1)
=

1

2ξf(y1)
√

2πσ2
u

exp

{
−(y1 − x1v)

2

2σ2
u

− |v|
ξ

}
. (7)

One can then solve for the MAP estimate under the Laplace prior ṽ ∼ L(0, ξ),

v̂map,L = argmax
v

f(v|y1) = argmin
v

{
(y1 − x1v)

2

2σ2
u

+
|v|
ξ

}
(8)

=
1

x1

S(y1;σ2
u/(x1ξ)) = v̂lasso. (9)
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This coincides with the LASSO estimate (3) if we assign ρ = σ2
u/ξ. The Laplace distribution

concentrates its probability mass around zero than does the normal distribution. The MAP

method combined with such a sharply peaked prior tends to set a range of estimates to zero,

operationally equivalent to the role of the l1 norm regularization in Eq. (2).

Note that the original mathematical definition of LASSO in its Lagrangian form does not

require the specification of a prior distribution on v. Only the later interpretation of LASSO

may need us to specify the prior. For this reason, there could be different interpretations in

principal. We restate the two problems with the statistical interpretation of LASSO.

First, for its use of the posterior mode, the MAP estimation is not Bayesian rational.

When the posterior distribution is skewed, the mode usually differs from the mean and causes

estimation bias. A Bayesian rational agent should follow the posterior mean estimate which

integrates all the relevant information. The mode estimate can ignore useful information

and has to be viewed as a heuristic method (due to bounded nationality).

Second, the MAP-based argument for LASSO only works with a pure fixed Laplace prior.

If we replace it with a slightly different prior or deal with any uncertainty about this prior,

the MAP argument will not produce the LASSO objective. In reality, it seems too restrictive

to impose a pure and fixed Laplace prior on the model parameter. One might defend that

this prior is just an approximation or a simple device to model sparsity. The point is that

the general definition (1) of LASSO does not ask us to specify such a prior. The LASSO

itself is invented as a tool to solve sparse learning problems, not a model to describe them.

Based on these discussions, the statistical interpretation of LASSO is both heuristic (in

learning) and restrictive (in prior). This does not mean that the LASSO itself is heuristic or

restrictive. A major point made in this paper is that the LASSO method admits a Bayesian

rational interpretation which is applicable to flexible, uncertain priors.

To formalize our intuition, we develop a simple model of arbitrage trading which incorpo-

rates the ingredients of fat tails, model risks, and robust control. In our setup, traders follow

the rational Bayesian learning rule to evaluate all possible states and they obey sequential

rationality to optimize the standardized max-min expected utilities. In contrast to a pure

fixed Laplace prior which has a raw kurtosis of 6, agents in our model have an uncertain

fat-tail prior described by the Gaussian-Laplacian mixture distribution which has a kurtosis

ranging from 3 to 6.125. When agents are uncertain about the scale of fat-tail shocks, we

show that their max-min robust strategy is exactly a LASSO algorithm in equilibrium.
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3 Model

Arbitrage opportunities are often short-lived and unexpected by the general market. We

develop a model to analyze how arbitrageurs may capitalize on such opportunities. As the

model’s background, we first need a trading environment that occasionally produces pricing

errors. This is achieved in a two-period setup by incorporating random fat-tail shocks to

disrupt a presumably efficient market. We then introduce arbitrageurs to exploit mispricings.

Our model is based on three key assumptions: (1) the general Laplacian-Gaussian mixture

distribution for the asset’s liquidation value; (2) the linear price adjustments in responses to

total order flows, which contain informed trading proportional to the residual information;

(3) the strategic arbitrageurs who secretly exploit pricing errors by optimizing their max-min

expected utilities under uncertain fat-tail priors (as model risk). The linear pricing schedules

and the non-Gaussian asset values imply the occurrences of pricing errors. Our focus is to

study how arbitrageurs act in this uncertain fat-tailed environment.

Fat Tails. Consider a market with a single risky asset and two rounds of trading, indexed

by t = 1, 2. The asset liquidation value follows a Laplacian-Gaussian mixture distribution,

which is denoted as ṽ ∼ LG(α, ξv) and described by the probability density function,

f(v) =
α

2ξv
exp

(
−|v|
ξv

)
+

1− α√
2πσ2

v

exp

(
− v2

2σ2
v

)
. (10)

It depends on the mixing weight α (the frequency of fat-tail shocks), the fat-tail scale pa-

rameter ξv (the dispersion of fat-tail shocks), and the Gaussian variance σ2
v . In simulations,

ṽ is randomly drawn from either a Gaussian or a Laplacian distribution, since we can write

ṽ = (1− s̃) · ṽG + s̃ · ṽL, with ṽG ∼ N (0, σ2
v) and ṽL ∼ L(0, ξv), (11)

where s̃ is a Bernoulli random variable that is equal to 1 with probability α and to 0 with

probability 1− α. In Eq. (11), the distributional type of ṽ is encoded by the value of s̃.

Empirically, the distribution of stock returns exhibits one sharp peak and two fat tails.

It can be reasonably characterized by the above mixture distribution (Lillo and Mantegna

(2000), Silva et al. (2004), Haas, Mittnik, and Paolella (2006), Behr and Pötter (2009)). The

picture is also consistent with the stylized fact that the stock market experiences jumps.

Theoretically, the mixture prior combines two well-known distributions which are simple

and stable.7 It may be viewed as a microstructure snapshot of the jump-diffusion process

7As discussed by Fama (1963, 1965) and Rachev and SenGupta (1993), it is appealing to model stock
returns as realizations of some stable distribution. The Gaussian distribution is Lévy stable, whereas the
Laplace distribution is geometric stable. See Kotz, Kozubowski, and Podgórski (2001).
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assumed in the option pricing model of Kou (2002). The fat-tail component (ṽL) in Eq.

(11) can create sparse arbitrages if the general market believes that both informed and noise

demands follow Gaussian distributions (e.g., Kyle (1985)). The general structure of Eq. (10)

covers the Laplace distribution as a special case (i.e., α = 1). This is convenient when we

refer to the statistical interpretation of LASSO since it hinges on a pure Laplace prior.

Linear Pricing. Price movements are assumed to be linear in the total order flows ỹt:

p̃1 − p0 = λ1ỹ1, p̃2 − p̃1 = λ2ỹ2, (12)

where λt > 0 is the price impact per unit of order flow at time t. We can set the initial

price p0 = 0 without loss of generality. The total order flow ỹt contains private information

which, by dynamical consistency, is proportional to the residual information ṽ− p̃t−1. This is

a common feature of dynamic trading models following Kyle (1985). To avoid the informa-

tion from being fully revealed, the order flows are contaminated by noise trading demands,

which obey the Gaussian law, ũ1 ∼ N (0, σ2
u) and ũ2 ∼ N (0, γσ2

u), with time-varying volatil-

ities tuned by the parameter γ > 0. All the random variables ṽ, ũ1, and ũ2 are mutually

independent. Thus, before considering the arbitrage trading, the total order flows are

ỹ1 = β1(ṽ − p0) + ũ1, ỹ2 = β2(ṽ − p̃1) + ũ2, (13)

where βt > 0 is the trading intensity on the remaining information θ̃t := ṽ − p̃t−1 at time t.

Eq. (12) and Eq. (13) together describe the trading environment of our model. This can

be embedded in a linear subgame-perfect Markov equilibrium of a classical trading model,

such as Kyle (1985), Holden and Subrahmanyam (1992), Foster and Viswanathan (1996).

An example (microfoundation) is presented below, with details discussed in Appendix A.1.

Example. Consider the two-period case of the multi-period model in Holden and Sub-

rahmanyam (1992), where M ≥ 1 informed traders privately observe the value of ṽ at t = 0.

Market makers believe that ṽ is drawn from the Gaussian distribution N (0, σ2
v). There exists

a unique linear equilibrium where the asset price moves linearly as in Eq. (12) with

λ1 =

√
M(M + 1)2[(M + 1)2 − 2/δ]

(M + 1)3 − 2M/δ
· σv

σu

, λ2 = δλ1 =

√
δM/γ

δ(M + 1)3 − 2M
· σv

σu

. (14)

Here, the ratio δ := λ2/λ1 is the root of the cubic equation, (M+1)4γδ3−2(M+1)2γδ2−(M+

1)3δ + 2M = 0, subject to the constraint δ(M + 1)2 > 2 and the second-order conditions.

The aggregate order flows in this example obey the form of Eq. (13). The intensities of
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aggregate informed trading in Eq. (13) are found to be

β1 =
δM(M + 1)2 − 2M

λ1[δ(M + 1)3 − 2M ]
, β2 =

M

λ2(M + 1)
. (15)

When M = 1, Eq. (14) and Eq. (15) reproduce the solution for the two-period Kyle model.

In general, the linear pricing rule (12) is efficient only when ṽ is Gaussian (i.e., α = 0).

If ṽ actually follows the mixture distribution (10) with α ∈ (0, 1] and if its fat-tailed part

is unexpected by the market, then pricing errors will take place with probability α. The

generic results in this paper do not depend on the content of λt or βt. For this reason, both

λt and βt will be treated as exogenously given and commonly known. The above example

provides a microfoundation which is not unique but general enough for numerical purposes.

The assumption of linear price changes (12) has both theoretical and empirical relevance.

Huberman and Stanzl (2004) show that if the price impact of trades is both permanent and

time-independent, then only linear price impact functions can rule out quasi-arbitrage and

support viable market prices. Empirically, the price impact function is found to be sublinear

for small and medium-size orders, with moderate concavity for large orders.8

The linear pricing rule implies that market makers may have Gaussian beliefs or other

concerns (e.g., robustness) that effectively restrict themselves to the linear pricing strategy.

It is perhaps the case that the market has ignored some sparse, short-lived arbitrages (Chinco

et al. (2019)) or that some information is too subtle to be noticed by average traders (Deng,

Gao, Hu, and Zhou (2020)). Price inefficiency caused by incorrect beliefs may not persist in

the long term because the market may gradually learn and fix the problem. If we follow the

standard assumption in Kyle-type models that market makers know the true distributions

and set prices as efficient as possible, then their optimal pricing strategy should be nonlinear

and convex given the fat tails of ṽ. This is at odds with the empirical price impact function.

Another possibility is that the objective of market makers in reality may be different from

what has been assumed in standard models. When the trading environment receives various

uncertain shocks, market makers may become concerned more about the robustness than

about the efficiency of their pricing schedules. The linear pricing rule is simple and robust,

allowing them to readily tune the price impact parameters λt and avoid losses on average.

This argument can sustain inefficient prices, The linear pricing rule can lose efficiency when

the asset value is fat-tailed: it tends to underestimate the information content in large orders.

The frequency and the magnitude of mispricings are controlled by α and ξv, respectively.

This is how our setup generates arbitrage opportunities and opens the door to arbitrageurs.

8See Loeb (1983), Lillo and Mantegna (2000), Grinold and Kahn (2000) [p. 453], Hasbrouck and Seppi
(2001), Plerou, Gopikrishnan, Gabaix, and Stanley (2002), Gabaix et al. (2006), Kyle and Obizhaeva (2016).
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Cautious Arbitrageurs. Consider a number of arbitrageurs, indexed by n = 1, ..., N . They

are sophisticated enough to know about the distributional structure of ṽ. They do not observe

ṽ until it is revealed to the public at t = 3. Each arbitrageur can secretly place two orders, z̃1,n

and z̃2,n, to exploit the short-term mispricings. Their strategy profile is denoted by a matrix

of real-valued functions, Z = [Z1, ...,ZN ] where Zn = ⟨Z1,n, Z2,n⟩ is the n-th arbitrageur’s

strategy for n = 1, ..., N . The quantities traded by the n-th arbitrageur are z̃1,n = Z1,n(p0)

and z̃2,n = Z2,n(p̃1). The trading profit for the n-th trader is π̃z,n :=
∑2

t=1(ṽ − p̃t)z̃t,n. Once

we take into account their trading activities, the actual order flow at time t ∈ {1, 2} is

ỹt = βt(ṽ − p̃t−1) +
∑N

n=1
z̃t,n(p̃t−1) + ũt. (16)

Arbitrageurs are regarded as strategic institutional traders who know the total number (N)

of competitors. In our model, they could infer α from the sample kurtosis of realized stock

values, although our key results remain when traders are uncertain about α.9 Considering

the difficulty in predicting jump events (Bollerslev and Todorov (2011a,b)), we assume that

arbitrageurs do not know exactly when the pricing errors would take place (i.e., they do not

observe s̃ in Eq. (11)) or how severe the errors would be (i.e., they are uncertain about ξv).

To formalize the model risk faced by arbitrageurs, we express their uncertain priors as

ṽ ∼ LG(α, ξ̃), where ξ̃ ∈ [ξL, ξH ] can take any value between the lowest and highest priors.

With this fat-tailed model risk, arbitrageurs may care about the robustness of their strategies.

Gilboa and Schmeidler (1989) axiomatize the max-min expected utility theory as a standard,

rational framework for modeling ambiguity-averse preferences. We follow this classic theory

by assuming that each arbitrageur’s objective is to maximize the minimum expected trading

profit over all possible priors. Each trader will internalize the price impacts of all traders.

Definition of Equilibrium. Given the price function (12) and the aggregate order flows (16),

we define a sequential trading (partial) equilibrium among arbitrageurs who have uncertain

fat-tail priors LG(α, ξ̃) with ξ̃ ∈ [ξL, ξH ]. The equilibrium is described by a matrix of their

strategies Z such that for all n = 1, ..., N and any alternative strategy profile Z′ that differs

from Z only in the n-th entry Z′
n = ⟨Z ′

1,n, Z
′
2,n⟩, the strategy profile Z yields a utility level

(i.e., the minimum expected profit over all possible priors) no less than Z′, and Z2,n yields a

utility level in the second period no less than that produced by any single deviation Z ′
2,n:

min
ξ

EA[π̃z,n(Z)|ξv = ξ] ≥ min
ξ

EA[π̃z,n(Z
′)|ξv = ξ], (17)

min
ξ

EA[(ṽ − p̃2(·, Z2,n))Z2,n|p̃1, ξv = ξ] ≥ min
ξ

EA[(ṽ − p̃2(·, Z ′
2,n))Z

′
2,n|p̃1, ξv = ξ]. (18)

9Given the mixture distribution (10), the kurtosis of ṽ is 3+3(4+α)(1−α)/(2−α)2 which only depends
on α; see Haas et al. (2006). Section 6.1 discusses the case when traders are uncertain about both α and ξv.
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4 Equilibrium Strategies

4.1 Optimal strategy under a fixed prior

Arbitrageurs’ trading strategies are driven by their estimates of the extent to which the

asset has been mispriced. Conditional on past prices, arbitrageurs’ expectations of ṽ depend

on their fat-tail priors LG(α, ξ̃) with α ∈ (0, 1]. When there is no model risk about ξ at all,

arbitrageurs become the standard subjective expected utility optimizers, under a fixed fat-tail

prior LG(α, ξ). This leads to the benchmark trading strategy in this paper.

Theorem 1. Suppose arbitrageurs have the same fixed Laplacian-Gaussian prior LG(α, ξ)
where α ∈ [0, 1] and ξ ∈ (0,∞). There exists a symmetric equilibrium where they choose to

watch the market without any betting at t = 1, i.e., Zo
1,n = 0, and their optimal strategy at

t = 2 is proportional to their posterior mean estimate θ̂ of the pricing error θ̃ := ṽ− p1, i.e.,

Zo
2,n(p1;α, ξ) =

1− β2λ2

λ2(N + 1)
· θ̂(p1;α, ξ) =

1− β2λ2

λ2(N + 1)
· [v̂(p1;α, ξ)− p1]. (19)

Here, v̂ := EA[ṽ|p1, p0] is the posterior mean estimate of ṽ under arbitrageurs’ prior LG(α, ξ)
and conditional on the price history. Given the linear pricing rule (12), v̂ only depends on

the order flow y1 which drives the price change p1 − p0. If we measure order flows in units

of the noise volatility, y := y1/σu, and define κ := σu/(β1ξ), then the posterior mean of ṽ is

v̂(y) =
ασu(y − κ)erfc

(
κ−y√

2

)
β1erfc

(
κ−y√

2

)
+ β1e2κyerfc

(
κ+y√

2

) +
ασu(y + κ)erfc

(
κ+y√

2

)
β1erfc

(
κ+y√

2

)
+ β1e−2κyerfc

(
κ−y√

2

) +(1−α)λ1σuy.

(20)

This function strictly increases with the order flow and has two shape parameters α and κ(ξ).

Asymptotically, v̂ becomes linear in the total order flow realized at t = 1:

v̂ → α[y1 − sign(y1)κσu]/β1 + (1− α)λ1y1, as |y1| → ∞. (21)

Proof. See Appendix A.2.

Given Eq. (20) and p1 = λ1y1, one can factor out α from the strategy function (19):

Zo
2,n(y1;α, ξ) = αZo

2,n(y1;α = 1, ξ) =
α(1− β2λ2)[v̂(y1;α = 1, ξ)− λ1y1]

λ2(N + 1)
. (22)

The trading intensity is exactly proportional to the frequency of fat-tail shocks. Therefore,
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the key mathematical properties of Zo
2,n(y1;α, ξ) is independent of α. This scaling rule is an

important feature of all Bayesian rational strategies discussed in this paper.

Because arbitrageurs’ prior LG(α, ξ) is a symmetric distribution, they tend to postpone

trading until they can distinguish the direction of signals (as the posterior becomes skewed).

When solving the equilibrium, we conjecture first and verify later that arbitrageurs do not

trade at t = 1. This is confirmed by Theorem 1 and explains our choice of a two-period setup.

The no-trade conjecture holds if the market is not too crowded for arbitrageurs; otherwise,

it can be profitable for a trader to trade at t = 1 in the hope that other traders get misled.

Proposition 1. For ξ > 0 and α ∈ [0, 1], the symmetric equilibrium in Theorem 1 exists if

the following market condition holds:

1 +
α(1− β1λ1)

β1λ1

· N − 1

N + 1
<

2
√

λ2/λ1

1− β2λ2

. (23)

Proof. See Appendix A.3.

The condition (23) turns out to be a universal condition for all the equilibria analyzed in

this paper. Unless otherwise specified, this (sufficient) condition is assumed to hold hereafter.

This precludes unilateral deviations from the no-trade strategy at t = 1. According to

(23), the equilibrium can accommodate an infinite number of arbitrageurs when the trading

environment satisfies: α + (1− α)β1λ1 < 2β1

√
λ1λ2/(1− β2λ2).

10

Corollary 4.1. The strategy function Zo
2,n(p̃1;α, ξ) = Zo

2,n(ỹ1;α, ξ) defined by Eq. (19) and

Eq. (20) has the following properties:

(a) It is a smooth, odd function of y1 and symmetric about the origin.

(b) It is a convex function for y1 ≥ 0 and a concave function for y1 ≤ 0.

(c) It has two slant asymptotes for any ξ ∈ (0,∞) which take the general form below,

Z∞(y1;α, ξ) =
α(1− β1λ1)(1− β2λ2)

β1λ2

· y1 − sign(y1)K(ξ)

N + 1
, (24)

where the horizontal intercept K(ξ) is inversely related to ξ but independent of α,

K(ξ) =
κ(ξ)σu

1− β1λ1

=
σ2
uξ

−1

β1(1− β1λ1)
. (25)

10For example, if λt and βt are determined by the two-period Kyle model (see Proposition 1 of Huddart,
Hughes, and Levine (2001)), one can verify that the equilibrium condition (23) holds even when N → ∞.
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(d) There exists a unique critical value, ξc > 0, endogenously determined by the equation:

1 +

(
σu

β1ξc

)2

−
√

2

π

σu

β1ξc

exp(−σ2
u/(2β

2
1ξ

2
c ))

erfc(σu/(
√
2β1ξc))

= β1λ1. (26)

For ξ ≥ ξc, Z
o
2,n(y1;α, ξ) is an increasing function of y1 and it has only one root at y1 = 0.

For ξ < ξc, Z
o
2,n(y1;α, ξ) is a non-monotonic function of y1 and it has three different roots.

Note that ξc is independent of α and ξv; it depends on the ratio σu/β1 and the product β1λ1.

Proof. See Appendix A.4.
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Figure 1. The subjective optimal strategy Zo
2,n(y1;α, ξ) in Eq. (19) for various values of ξ.

The main properties listed in Corollary 4.1 are reflected in Figure 1 where we plot the

optimal strategy (19) for different values of ξ. An arbitrageur with the extreme prior ξ → 0

believes that the asset value is unchanged (i.e., ṽ = 0). This trader will attribute all the order

flow y1 to noise trading and trade against any price movements. In contrast, an arbitrageur

with the extreme prior ξ → ∞ believes that the first-period order flow was dominated by

informed trading and will chase the price trend straightly. When ξ < ξc, this strategy is

contrarian (“leaning against the wind”) for small order flows but momentum for sufficiently

large ones. Fatter tails in the prior (i.e., larger ξ) lead to a lower threshold for switching to

momentum trading. When ξ ≥ ξc, the strategy is always trend-following.
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4.2 Robust strategy under uncertain priors

Model risks can be prominent in a fat-tailed trading environment where market meltdown

may be triggered if some big trader has applied a wrong model. Institutional traders are

often required to test their strategies across alternative scenarios. This pressure can motivate

them to adopt strategies that sacrifice some optimality for robustness.

In our setup, how would arbitrageurs trade given their uncertain fat-tail prior LG(α, ξ̃)?
Figure 1 shows that they will face ambiguity about the profitable trading direction when

they observe small and medium order flows. They may want to buy this asset under a high

prior (blue line) but sell it under a low prior (red line). In case they use the wrong prior,

they may trade on the wrong side and expose themselves to adverse fat-tail shocks. For

robustness, they should not trade until there is little ambiguity about the trading direction.

Corollary 4.2. When the range of uncertain Laplace prior satisfies ξL < ξc ≤ ξH ,
11 there is

an equilibrium where arbitrageurs idle at t = 1 and their pure max-min strategy at t = 2 is

Zo
2,n(y1;α, ξL)1|y1|>KL

, where KL(ξL) is the positive root of the equation: Zo
2,n(y1;α, ξL) = 0.

The solution of KL is independent of α, according to the scaling property (22).

Proof. See Appendix A.5.

The trading strategy Zo
2,n(y1;α, ξL)1|y1|>KL

in Corollary 4.2 is extremely biased because

it is determined by the lowest prior ξL and its trading threshold KL can be arbitrarily large

when ξL is arbitrarily small. This strategy may sacrifice too much optimality for robustness,

making the equilibrium in Corollary 4.2 undesirable in reality.

Arbitrageurs may ponder a different equilibrium where they are not attached to the low-

est prior ξL. This debiased equilibrium may be more attractive as it may balance robustness

and optimality. In any possible equilibrium, the asymptotes of arbitrageurs’ strategies at

t = 2 cannot slope differently from Eq. (24); otherwise, for sufficiently large y1, they would

trade either more than the most optimistic strategy (following ξH) or less than the most pes-

simistic strategy (following ξL). Thus, in a symmetric and debiased equilibrium, arbitrageurs’

strategies must have the same asymptotes in the form of (24), denoted Z∞(y1;α, ξw) for some

ξw > ξL. Arbitrageurs can average across multiple priors to achieve ξw > ξL. There is a for-

mal argument for this debiasing mechanism: observing a sufficiently large order flow y1 may

convince arbitrageurs that y1 contains a strong fat-tail signal, which may ease their concerns

about trading on the wrong side and make them indifferent to model risks. Suppose they be-

come ambiguity-neutral as y1 → ±∞. Then the asymptotes of their strategies must coincide

11If ξc ≤ ξL < ξH , the max-min strategy is Zo
2,n(y1;α, ξL) but it means ξv < ξL < ξH . If ξL < ξH < ξc,

the max-min strategy is over-complicated and lacks empirical relevance. See Figure 11 and Appendix A.5.
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with the asymptotes of their risk-neutral strategies which, after averaging across all possible

priors, is given by E[Zo
2,n(y1;α, ξ̃)]. For an arbitrary weight function w : [ξL, ξH ] → [0, 1) with∫ ξH

ξL
w(ξ)dξ = 1, Eq. (24) and Eq. (25) imply that ξw is the weighted harmonic mean of ξ̃:

ξw :=

(∫ ξH

ξL

ξ−1w(ξ)dξ

)−1

. (27)

Depending on the weight function w(ξ), the weighted average ξw can take any value over the

interval (ξL, ξH) and correspondingly, the asymptotes Z∞(y1;α, ξw) can shift freely as well.

Theorem 2. There exists a symmetric, debiased equilibrium if the following conditions hold:

(C1) arbitrageurs’ admissible strategies converge to Z∞(y1;α, ξw) with K(ξw) < KL;

(C2) arbitrageurs’ admissible strategies are convex for y1 ≥ 0 and concave for y1 ≤ 0;

(C3) the range of their uncertain priors satisfies ξL < ξc ≤ ξH , where ξc solves Eq. (26).

In this equilibrium, arbitrageurs watch the market without any trading at t = 1. Their robust

trading strategy at t = 2 is a soft-thresholding function of the order flow y1 realized at t = 1:

Z2,n(y1;α,K(ξw)) = Z∞(y1;α, ξw)1|y1|>K(ξw) =
α(1− β1λ1)(1− β2λ2)

β1λ2(N + 1)
S(y1;K(ξw))

=
α(1− β1λ1)(1− β2λ2)

β1λ2(N + 1)
[y1 − sign(y1)K(ξw)]1|y1|>K(ξw). (28)

The equilibrium existence condition is still given by the inequality (23).

Proof. See Appendix A.6.

As discussed earlier, the first condition (C1) is endogenously implied by the existence of

a symmetric and debiased equilibrium. (C1) can be microfounded, for example, by assuming

arbitrageurs are asymptotically indifferent to the model risk. If (C1) is absent, the condition

(C2) alone will have no effect because this model economy will admit the same equilibrium

stated in Corollary 4.2 which only requires the condition (C3). Only when (C1) holds, the

condition (C2) can play a meaningful role in regularizing the max-min problem under (C1).12

Note that (C2) is consistent with the curvature property of optimal strategies (Corollary

4.1(b) and Figure 1). In practice, (C2) can be a desirable property to prevent overfitting.

Given (C1) and (C2), the admissible strategies must be enclosed by Zo
2,n(y1;α, ξ → ∞),

Zo
2,n(y1;α, ξ → 0), and Z∞(y1;α, ξw); see the shaded area in Figure 2. Any strategy that

12Without the curvature condition (C2), for any strategy that satisfies (C1), arbitrageurs can always find
some deviations that trade more conservatively than this strategy. Such deviations are preferred under the
max-min criterion but fail to support an equilibrium. Note that the deviations are possble because of the
gap between Z∞(y1;α, ξw) and Z∞(y1;α, ξL), which is a direct implication of (C1).
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Figure 2. The robust trading strategy Z2,n(y1;α,K) under model risk as in Theorem 2.

goes out of the shaded area is either irrational or violating (C1) or (C2). We focus on the

positive domain of y1 and divide the shaded area into three regions. First, for y1 ∈ [0, K(ξw)],

each arbitrageur will not sell against y1, considering that she may lose money on average by

doing so if the highest prior ξH is true. This rules out any decision point inside the triangle

“a”. Similarly, each arbitrageur will not purchase this asset, considering that she may lose

money if the lowest prior ξL is true. This rules out any decision point inside the triangle “b”.

By the max-min criterion, each arbitrageur will not trade for y1 ∈ [0, K(ξw)]. Next, for any

y1 ∈ (K(ξw),∞), each arbitrageur will not trade more than the amount of Z∞(y1;α, ξw),

because she understands that in the worst case she could lose more money by trading more.

This argument rules out any decision point inside the open region “c”. By symmetry, their

equilibrium strategy is the red line in Figure 2, which is exactly characterized by Eq. (28).

This robust strategy Z2,n(y1;α,K(ξw)) is a soft-thresholding function of the total order

y1. Its slope
α(1−β1λ1)(1−β2λ2)

β1λ2(N+1)
is independent of ξw, whereas its threshold K(ξw) =

σ2
uξ

−1
w

β1(1−β1λ1)
is

independent of α. The no-trade zone [−K(ξw), K(ξw)] indicates infrequent trading activities

at t = 2. Because arbitrageurs do not trade at t = 1 and only trade occasionally at t = 2,

a range of small pricing errors can survive in this market. Ex post, an econometrician may

find pervasive anomalies after analyzing the trading data in this model economy. She may

question the rationality or capability of arbitrageurs. Ex ante, arbitrageurs have rationally

assessed all the possible states and they let go many vague mispricings for robustness. There

are no exogenous frictions that limit their trading ability, except the price impact costs, λ1

and λ2, which can be endogenized in a standard Kyle-type model. The major friction in our

setup is the fat-tailed model risk which discourages cautious arbitrageurs from eradicating

all possible pricing errors.
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5 Main Results

5.1 LASSO as a Bayesian rational strategy

A strategy is a complete plan of action a player will take contingent on what circumstances

might arise. The choice of strategy usually depends on how the player predicts or estimates

relevant variables. When the prior is known and fixed, a Bayesian rational player will use the

posterior mean estimate to maximize her utility. When the prior is unknown or uncertain,

the player may take one of two routes: either sacrifice rationality to alter her learning method

or maintain rationality by optimizing a different utility function. When both routes lead to

the same strategy, we cannot distinguish which route the player has actually taken.

Given the standard definition of LASSO estimates (Eq. (1) in Section 2), we now define

the LASSO strategy as a plan of action which can be exactly and effectively implemented by

using the LASSO estimate(s) of economic variable(s). This definition only requires observa-

tional equivalence. A player’s motivation of using some machine learning technique is not

directly observable. If a player chooses a strategy indistinguishable from the strategy that

directly applies the XYZ technique, then we can only call it an XYZ strategy in the sense

of implementation. The definition itself does not take any stance on the player’s motivation

in developing the XYZ strategy. To rationalize the use of XYZ technique, we need a system

of economic arguments to show that some Bayesian rational strategy is an XYZ strategy. It

is this system of arguments that constitutes the economic rationale for using the technique.

Theorem 3. For any α ∈ (0, 1], the robust strategy (28) in Theorem 2 is a LASSO strategy:

Z2,n(y1;α,K(ξw)) =
α(1− β2λ2)(v̂

lasso − λ1y1)1|y1|>K(ξw)

λ2(N + 1)
=

α(1− β2λ2)

λ2(N + 1)
· θ̂lasso. (29)

where the LASSO estimate v̂lasso is the solution to the LASSO objective function:

v̂lasso(y1; ξw) := argmin
v

{
1

2
|y1 − β1v|2 +

σ2
u

ξw
|v|

}
=

1

β1

S(y1;κσu). (30)

and the LASSO estimate θ̂lasso of the mispricing θ̃ = ṽ − p1 solves the LASSO objective:

θ̂lasso(y1; ξw) := argmin
θ

{
1

2

∣∣∣∣y1 − β1θ

1− β1λ1

∣∣∣∣2 + σ2
u|θ|

(1− β1λ1)2ξw

}
=

1− β1λ1

β1

S(y1;K(ξw)).

(31)

The two thresholds satisfy κaσu < K(ξw) = κaσu/(1− β1λ1) since β1λ1 ∈ (0, 1).

Proof. See Appendix A.7.
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Theorem 3 shows that under the uncertain fat-tail prior LG(α, ξ̃) with any α > 0, the

robust strategy (28) is always a LASSO strategy. Theorem 2 provides the system of economic

arguments for developing this robust strategy. Therefore, under fairly general conditions,

we show that the LASSO algorithm is a Bayesian rational strategy for agents who face prior

uncertainty about the fat-tail scale and optimize the max-min expected utility.

This result provides the first economic rationale for using the LASSO technique. Unlike

the statistical interpretation offered by Tibshirani (1996), our economic interpretation does

not invoke the heuristic MAP estimate nor require a pure and fixed Laplace prior. In our

setup, agents (i.e., arbitrageurs) are Bayesian rational because they use the posterior mean

estimate to assess all the possible states and scenarios; the LASSO strategy they choose

is also sequentially rational because each of them applies dynamic programming to solve a

two-period objective function; the LASSO strategy also qualifies as an equilibrium strategy

because each agent strategically considers the best responses of other agents before choosing

the strategy. Agents’ prior belief is a general mixture distribution (10) that has a raw kurtosis

from 3 to 6.125, depending on the mixture weight α. Our theory holds for any α ∈ (0, 1]

which covers a wide range of fat-tailedness of the prior distribution.

The next proposition shows the restrictive prior assumption in the MAP-based interpre-

tation. This does not work if the prior is not exactly Laplacian or if the prior is uncertain.

We discuss later that the MAP-based trading rule not only violates Bayesian rationality but

also lacks sequential rationality. As a non-equilibrium strategy, it can easily incur losses.

Proposition 2. When α = 1, the robust LASSO strategy (28) is observationally equivalent

to a heuristic, feedback trading strategy when arbitrageurs all adopt the MAP learning rule

to estimate ṽ under a pure and fixed Laplace prior L(0, ξ = ξw). This can be written as

Z2,n(y1;α = 1, K(ξw)) = Zmap
2,n (y1;α = 1, ξ = ξw) =

(1− β2λ2)(v̂
map − λ1y1)1|y1|>K(ξw)

λ2(N + 1)
, (32)

where the MAP estimate v̂map coincides with the LASSO estimate v̂lasso defined by Eq. (30):

v̂map(y1;α = 1, ξ = ξw) = argmax
v

f(y1|v)f(v;α = 1, ξw)

f(y1)
=

S(y1;κaσu)

β1

= v̂lasso(y1; ξw). (33)

When α ̸= 1, the above coincidence breaks. The MAP-based trading rule given the fixed prior

LG(α, ξw) differs from the robust LASSO strategy (28) given the uncertain prior LG(α, ξ̃):

Z2,n(y1;α,K(ξw)) ̸= Zmap
2,n (y1;α, ξw), for any α ∈ (0, 1). (34)

Proof. See Appendix A.8.
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Figure 3. The robust LASSO strategy Z2,n(y1;α,K(ξw)) and the MAP-based trading rule
Zmap

2,n (y1;α, ξw) for different values of α.

The MAP-based heuristic strategy is a LASSO strategy only when traders have the pure

fixed Laplace prior LG(α = 1, ξ). For any α ∈ (0, 1), we need to numerically determine the

MAP strategy Zmap
2,n by computing the posterior and finding its mode v̂map. Figure 3 shows the

functional profiles of the two strategies. Due to Bayesian rationality (which averages across

all possibilities), the robust strategy satisfies Z2,n(y1;α,K(ξw)) = αZ2,n(y1;α = 1, K(ξw))

and its threshold K(ξw) is independent of α. In contrast, the MAP strategy lacks this scaling

property: its asymptotes are independent of α and its threshold increases as α decreases.13

Moreover, the MAP-based strategy becomes discontinuous when α is sufficiently small. It

has a wider inaction region but, once triggered, tends to respond at the highest intensity.

This all-or-none decision just relies on a heuristic threshold (following the MAP estimate) to

distinguish whether the noisy input contains a Laplacian or Gaussian signal: when the input

y1 exceeds the threshold, the MAP algorithm treats y1 as if it surely contains the Laplacian

signal ṽL in Eq. (11). This kind of data classification is frequently used for machine learning

tasks.14 However, it may violate Bayesian rationality, as can be seen in our setup.

The feedback trading rule Zmap
2,n does not obey the sequential rationality either. Although

it implicitly assumes that no one would trade in the first (watching) period, a trader may

profitably disturb the price at t = 1, considering that those feedback traders can misinterpret

it as a true signal and overreact to her anonymous trading. In general, the MAP-based

trading rule is not an equilibrium strategy.15 It is not derived by rational agents who use

backward induction to dynamically optimize their utility functions.

13We can show that limy1→±∞
1
y1
Zmap
2,n (y1;α, ξ) =

(1−β1λ1)(1−β2λ2)
β1λ2(N+1) , which is independent of α.

14See, for example, the naive Bayes classifier (Domingos and Pazzani (1997)).
15If there is no model risk, rational traders will settle at an equilibrium as in Theorem 1.
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Figure 4. The expected total profits when arbitrageurs all follow the same robust LASSO
strategy Z2,n(y1;α,K(ξw)) versus those when they follow the MAP-based feedback trading
rule Zmap

2,n (y1;α, ξw) under the fixed prior LG(α, ξ = ξw). We examine the case of α = 0.5
and a wide range of values of ξw relative to the true prior value of ξv. The left panel reports
the monopolistic result N = 1. The right panel is about the “competitive” limit N → ∞.

For the LASSO strategy Z2,n(y1;α,K), its no-trade zone [−K,K] does not play the role

of signal classification but shrinks a range of ambiguous estimates to zero, consistent with

the objective of robust optimization. It is also remarkable that all the Bayesian-rational

strategies solved in Section 4 are convex for y1 > 0 and concave for y1 > 0. Figure 3 shows

that the MAP strategy violates this rational curvature property for any α ∈ (0, 1).

As a principal, rational agents should abandon the MAP-based alternatives altogether.

The MAP strategy may emerge perhaps when some traders have been educated to take

“advantage” of the MAP method. It is unclear to what extend this method has been adopted

by financial practitioners. The answer may well depend on their educational backgrounds.

For example, a quant who was trained in the field of image analysis (e.g., Greig, Porteous, and

Seheult (1989)) or speech recognition (e.g., Lim and Oppenheim (1979)) but lacks systematic

training in finance or economics may have a higher tendency to embrace the MAP estimation.

When a substantial fraction of quants have used it to develop their trading strategies, the

market may have systemic risk and disasters like the quant meltdown in 2007 may not be

uncommon. As shown in Figure 4, the expected total profits when traders all follow the

Bayesian-rational LASSO strategy widely dominates those when they follow the heuristic

MAP-based strategy. This dominance holds for arbitrary values of N and ξw. The MAP-

based strategy tends to incur significant losses when traders overestimate the scale of fat

tails (i.e., ξw > ξv). This numerical example is just suggestive. It indicates the importance

of bridging the gap between neoclassical economics and machine learning technology.
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5.2 Limits to arbitrage and “cartel” effect

Now we discuss the implications of the robust LASSO strategy in our model economy. The

literature on limits of arbitrage (as reviewed by Gromb and Vayanos (2010)) has documented

various market frictions which have a common feature as to limit arbitrageurs’ ability to

trade. Free from such frictions, our model is well suited to demonstrate a mechanism which

only affects arbitrageurs’ willingness to trade. In our setup, all the traders are risk neutral.

They face no financial or trading constraints, except the price impact costs.16 This setup

highlights model risk management as the key friction. With uncertain fat-tail priors, this

friction can lead to a robust strategy with a wide no-trade zone. There are two channels for

this strategy to cause limited arbitrage. One is arbitrageurs’ idleness in both the watching

period (t = 1) and the speculation period (t = 2). The other channel is a subtle “cartel”

effect due to arbitrageurs’ conservative trading at t = 2.
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Figure 5. Left: the posterior mean estimate v̂(y1) and the LASSO estimate v̂lasso(y1) under
a common prior LG(α, ξv). Right: the perfectly optimal strategy Zo

2,n(y1;α, ξv) and the
asymptotically unbiased robust strategy Z2,n(y1;α,K(ξv)).

To illustrate the first channel, we compare the unbiased robust strategy Z2,n(y1;α,K(ξv))

(corresponding to the case of ξw = ξv) with the perfectly optimal strategy Zo
2,n(y1;α, ξv) (cor-

responding to the case that traders know the true prior ξv). By Theorem 3, the strategy

Z2,n equivalently implements the LASSO estimate v̂lasso,17 whereas the optimal strategy Zo
2,n

is directly driven by the posterior mean v̂. As the left panel of Figure 5 shows, the posterior

mean estimate v̂ is a smooth nonlinear function, while the LASSO estimate v̂lasso is a soft-

16In standard Kyle-type models, the price impact costs are not at all detrimental to market efficiency.
17By Proposition 2, v̂lasso coincides with the posterior mode estimate v̂map only when α = 1.
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thresholding function which is zero for y1 ∈ [−κaσu, κaσu] and is linear outside that region.

One can also see that v̂ > v̂lasso when y1 > 0 and v̂ < v̂lasso when y1 < 0. The right panel of

Figure 5 compares these two strategies. Again, the optimal strategy Zo
2,n is a nonlinear func-

tion with asymptotic linearity, whereas the robust strategy Z2,n is a soft-thresholding function

with an inaction zone [−K,K]. It can be verified that Z2,n(y1;α,K(ξv)) < Zo
2,n(y1;α, ξv) for

|y1| > K. This follows from robust control which tends to produce conservative responses.

The robust LASSO strategy only reacts to large events and deliberately ignores small

ones. This feature is similar to many phenomena in behavioral economics, including limited

attention, status quo bias, anchoring and adjustment, among others; see Barberis and Thaler

(2003) and Gabaix (2014). Despite such similarities, the LASSO strategy (28) is the rational

choice by traders in our setting. They leave money on the table because the fat-tailed model

risk discourages them from betting on directionally ambiguous pricing errors.
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Figure 6. The expected total trading profits of all arbitrageurs when they follow the robust
strategy Z2,n(y1;α,K(ξw)) versus when they follow the optimal strategy Zo

2,n(y1;α, ξw).

To elucidate the second channel, we need to compare the profitability of the robust strat-

egy Z2,n(y1;α,K(ξw)) with that of the optimal strategy Zo
2,n(y1;α, ξw).

18 The comparison is

on a fair ground when these strategies can converge as |y1| → ∞. Figure 6 shows the total

trading profits earned by all arbitrageurs when they follow the same strategy. The left panel

shows the case of ξw = ξv, i.e., arbitrageurs are asymptotically unbiased. With the optimal

strategy, they enjoy oligopoly profits for small values of N , while their total profits decay

rapidly toward zero as N increases to infinity. In contrast, arbitrageurs’ total profits decay

18This is a benchmark strategy as if traders ignore model risk and follow the “optimal” strategy using the
averaged prior ξw. Another benchmark is the rational-expectations strategy, Ew[Z

o
2,n(y1;α, ξ̃)], which is less

tractable but extremely close to Zo
2,n(y1;α, ξw). We have Ew[Z

o
2,n(y1;α, ξ̃)] → Zo

2,n(y1;α, ξw) as |y1| → ∞.
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slowly when they follow the robust LASSO strategy. For N ≤ 10, this strategy allows them

to capture the majority of what they would earn using the optimal strategy. For N > 10,

their robust trading profits even surpass the optimal trading profits. In the limit N → ∞,

their total profit converges to a level at about 20% of the maximal monopoly profit (nor-

malized to one). This result may be surprising given that the difference between these two

strategies vanishes everywhere: limN→∞ |Z2,n(y1;α,K(ξw))− Zo
2,n(y1;α, ξw)| = 0.

Figure 6 also compares the total trading profits when ξw = 0.9ξv. With the robust strat-

egy, arbitrageurs earn significant profits which are almost flat as N increases. In contrast,

the optimal strategy results in more and more losses when N increases from 4 to infinity. Its

performance is much more sensitive to the competition. From extensive numerical experi-

ments, we find that the robust strategy can often outperform the optimal strategy when they

are both biased (i.e., ξw ̸= ξv). Thus, the subjective optimal strategy seems unattractive in

the presence of estimation bias and trading competition.

Theorem 4. In the symmetric equilibrium of Theorem 1, the expectation of arbitrageurs’

aggregate profit when they all follow the subjective optimal strategy Zo
2,n(y1;α, ξw) is

E

[
N∑

n=1

(ṽ − p̃2)Z
o
2,n

]
=

N(1− β2λ2)
2

(N + 1)λ2

E

[
θ̂(ỹ1;α, ξv)θ̂(ỹ1;α, ξw)−

N

N + 1
θ̂(ỹ1;α, ξw)

2

]
, (35)

where θ̂(y1;α, ξw) := E[ṽ − p̃1|y1;α, ξw] = v̂(y1;α, ξw)− λ1y1 and v̂(y1) is given by Eq. (20).

When ξw = ξv and N = 1, we obtain the maximal monopoly profit, (1−β2λ2)2

4λ2
E[θ̂(ỹ1;α, ξw)

2].

When ξw = ξv and N → ∞, arbitrageurs will compete away their aggregate trading profit.

In the symmetric equilibrium of Theorem 2, the expectation of arbitrageurs’ aggregate

trading profit when they all follow the robust strategy Z2,n(y1;α,K(ξw)) is given by

E

[
N∑

n=1

(ṽ − p̃2)Z2,n

]
=

Nα2(1− β2λ2)
2

(N + 1)λ2

E

[
(v̂(ỹ1; ξv)− v̂lasso(ỹ1; ξw))θ̂

lasso +
(θ̂lasso)2

N + 1

]
. (36)

When 0 < ξw ≤ ξv, the expected aggregate profit is always positive and has a positive limit:

lim
N→∞

E

[
N∑

n=1

(ṽ − p̃2)Z2,n

]
=

α2(1− β2λ2)
2

λ2

E[(v̂(ỹ1; ξv)− v̂lasso(ỹ1; ξw))θ̂
lasso(ỹ1; ξw)] > 0,

(37)

because v̂(ỹ1; ξv)− v̂lasso(ỹ1; ξw) and θ̂lasso(ỹ1; ξw) bear the same signs when |ỹ1| > K(ξw).

Proof. See Appendix A.9. Note that we have used v̂(ỹ1; ξv) to stand for v̂(ỹ1;α = 1, ξv).
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Figure 7. The profitability of the robust strategy Z2,n(ỹ1;α,K(ξw)) versus that of the
optimal strategy Zo

2,n(ỹ1;α, ξw) for a range of values of ξw relative to the true prior ξv.

Figure 7 compares the profitability of these two strategies for different values of ξw in

two extreme cases. In the monopoly case (N = 1), a single arbitrageur earns the maximal

profit if she use the optimal strategy when ξw = ξv. Her expected profit is, however, sensitive

to the bias and becomes negative when |ξw − ξv|/ξv ≳ 20%. In contrast, the performance

of the robust strategy is less sensitive to the bias and remains positive for a much wider

range of ξw. By following the price trends the robust LASSO strategy is more likely to

trade on the right side, whereas the optimal strategy can bet on the wrong side much more

frequently. In the competitive case (N → ∞), the total arbitrage profit under the optimal

strategy is almost always negative unless ξw ≈ ξv. This contrasts with the robust strategy

which maintains positive profitability for ξw ≤ ξv. While both strategies may lose money

for ξw > ξv, the robust strategy lose much less. Our results share some similarities with the

findings of Zhu and Zhou (2009) who report that the technical trading rules can be robust

to model specification and tend to substantially outperform the seemingly optimal trading

strategies under model uncertainty.

How can an infinite number of traders make significant profits when they follow the same

strategy? Figure 8 (left) plots [v̂(y1; ξv) − v̂lasso(y1; ξw)] · θ̂lasso(y1; ξw) as a function of the

input y1 when ξw = ξv. This product term drives the positive limit of Eq. (37). It shows

two sharp peaks in the outskirts of no-trade zone. Recall that the LASSO estimate shrinks

the mean prediction (Figure 5): |v̂lasso(y1)| < |v̂(y1)|. As this shrinkage is independent of N ,

it can actually benefit an arbitrary number of traders such that the entire group of them

can buy (or sell) the asset on average below (or above) the fair price; see the right panel of

Figure 8. Consequently, this statistical arbitrage remains profitable even when N → ∞.
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Figure 8. Left: [v̂(y1; ξv) − v̂lasso(y1; ξw)] · θ̂lasso(y1; ξw) as a function of y1 when ξw = ξv.
Right: E[p̃2 − ṽ|p1 = λ1y1] versus y1, where the shaded segment indicates the no-trade zone.
The red solid line is when arbitrageurs follow the robust strategy with the same threshold
K(ξv). The blue dashed line is when they use heterogeneous thresholds, denoted K(ξw,n).

We impose 1
N

∑N
n=1 ξ

−1
w,n = ξ−1

v to facilitate a fair comparison.

The non-vanishing profit earned by arbitrageurs can be attributed to their conservative

trading outside the no-trade zone. When ξw ≤ ξv, the robust LASSO strategy always trades

less than the unbiased optimal strategy: |Z2,n(y1;α,K(ξw))| < |Zo
2,n(y1;α, ξv)|. This under-

trading mitigates their competition, allowing traders to accumulate extra market power that

facilitates a “cartel” to protect their profits. Eq. (29) allows us to rewrite Eq. (37) as

α2(1− β2λ2)
2

λ2

E[(v̂ − v̂lasso)θ̂lasso] = 2α(1− β2λ2)E[(ṽ − v̂lasso) · Z2,n(ỹ1;α, ξw, N = 1)], (38)

equivalent to the monopoly case that an arbitrageur pays the cheaper price v̂lasso to receive ṽ.

This seemingly collusive outcome is not due to any trading frictions or financial constraints.

Like tacit collusion, it requires no communication device or explicit agreements. The “cartel”

is facilitated by traders’ strategic exercise of robust optimization. By rewarding arbitrageurs,

this novel effect serves as another channel that inevitably impedes market efficiency.

Price efficiency can be fully restored at t = 2 if the economy hosts an infinite number of

arbitrageurs and all of them follow the unbiased optimal strategy. Nonetheless, if arbitrageurs

are constrained by model risks and all adopt the robust LASSO strategy, then there will be

persistent pricing errors in the neighborhoods of p1 = ±λ1K, as shown in the right panel

of Figure 8. In general, whenever a mass of them are constrained by model risks, they will

trade conservatively, amass extra market power, and sustain inefficient prices.
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Proposition 3. Suppose the economy hosts an infinite number of risk-neutral arbitrageurs

(N → ∞). If there is ever a finite measure ϕ ∈ (0, 1] of them constrained by model risk as in

Theorem 2, then the asset price p̃2 is inefficient for almost all realizations of p̃1 = p0 + λ1ỹ1:

E[p̃2− ṽ|p̃1] → α(1−β2λ2)
{
[v̂(ỹ1; ξw)− v̂(ỹ1; ξv)] + ϕ

[
θ̂lasso(ỹ1; ξw)− θ̂(ỹ1; ξw)

]}
̸= 0. (39)

Proof. See Appendix A.10. Note that we have used θ̂(ỹ1; ξw) to stand for θ̂(ỹ1;α = 1, ξw).

Eq. (39) shows two sources for inefficient prices at t = 2. One is the estimation bias

(i.e., ξw ̸= ξv) which is applicable to all traders. The other is the under-trading by a fraction

of traders who exercise robust control. The price is inefficient almost everywhere, unless all

the arbitrageurs know the true prior (i.e., ξw = ξv and ϕ = 0). Bossaerts et al. (2010) and

Ahn et al. (2014) document considerable heterogeneity in risk and ambiguity aversion and

find that a fraction of individuals’ behavior is consistent with the standard expected utility.

Proposition 3 shows that our result is robust to investors’ heterogeneous preferences.

This implication also holds when arbitrageurs use the LASSO strategy (28) with hetero-

geneous thresholds, denoted K(ξw,n) for n = 1, ..., N . The aggregate robust trading with

heterogeneous thresholds becomes a smoother function of y1 (Figure 16 in Appendix A.10).

The right panel of Figure 8 shows that heterogeneous thresholds can partially smooth out

the “cartel” effect but cannot restore price efficiency.

6 Extensions and Applications

6.1 Uncertainty about the frequency of fat-tail shocks

Our setup can be easily extended to the case that traders are uncertain about both prior

parameters, α and ξv. In other words, they face model risk about the frequency and magni-

tude of mispricings simultaneously. Under the Gaussian-Laplacian mixture distribution (10),

the fat-tailedness (as measured by the raw kurtosis) of ṽ is given by 3+3 (4+α)(1−α)
(2−α)2

∈ (3, 49
8
],

which is a simple function of α. So we are considering a general situation where traders face

uncertainty about not only the stochastic volatility but also the fat-tailedness of stock value.

Proposition 4. Suppose arbitrageurs are uncertain about both α and ξv, with common priors

denoted as LG(α̃, ξ̃) where α̃ ∈ [αL, αH ] and as before ξ̃ ∈ [ξL, ξH ]. If they are asymptotically

ambiguity-neutral as (C1) in Theorem 2 and if the other two conditions (C2) and (C3) also

hold, then there exists a symmetric debiased equilibrium where arbitrageurs watch the market
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without trading at t = 1 and they follow a robust LASSO strategy at t = 2:

Z2,n(y1;α,K(ξw)) =
α(1− β1λ1)(1− β2λ2)

β1λ2(N + 1)
S(y1;K) =

α(1− β2λ2)

λ2(N + 1)
· θ̂lasso(y1;K), (40)

where α := E[α̃] is the prior mean of α̃ and θ̂lasso(y1;K) is still defined by Eq. (31).

Proof. Eq. (40) follows from Theorem 2 and the scaling property that α can be factored out

from the fixed-prior solution (28). The more rigorous proof resembles Appendix A.6.

Recall from Figure 3 that the robust LASSO strategy has the same threshold K(ξw) for

any positive values of α. With Bayesian learning, traders average across all possible priors.

They respond with α = E[α̃] in Eq. (40), since E[Z2,n(y1; α̃,K)] = E[α̃]Z2,n(y1;α = 1, K).

This also explains why our original setup only focuses on the prior uncertainty about ξv.

Thus, our derivation of the LASSO strategy holds in the general situation where agents

have formed a mixture prior on the estimated parameter but know little about the frequency

or the scale of its fat-tail component. This general applicability is in sharp contrast with the

MAP-based interpretation which requires a pure and fixed Laplace prior.

6.2 LASSO for a long-short portfolio of mispriced stocks

The result below rationalizes the application of a vector form of the LASSO algorithm. It

is a technical strategy that forecasts and exploits multiple misvalued stocks simultaneously.

Proposition 5. Suppose arbitrageurs anticipate multiple independent assets to be mispriced.

Each asset, indexed by j = 1, ..., J , is traded in a two-period environment with linear price

movements as in (12) and aggregate order flows as in (16). Arbitrageurs have uncertain

priors on each asset, denoted ṽj ∼ LG(α̃j, ξ̃j). If (C1)-(C3) in Theorem 2 hold, there is an

equilibrium where arbitrageurs choose to idle at t = 1 and follow a LASSO strategy at t = 2:

Z2,n(p1) :=

{
αj(1− β2,jλ2,j)

λ2,j(N + 1)
· θ̂lassoj (p1,j; ξw,j) : j = 1, ..., J

}
, (41)

where α = Ej[α̃j] is the prior mean frequency and ξw,j is the weighted harmonic mean of ξ̃j.

The vector of LASSO estimates, Θ̂lasso = {θ̂lassoj (p1,j; ξw,j) : j = 1, ..., J}, is defined by

Θ̂lasso := argmin
{θ1,...,θJ}

J∑
j=1

{
1

2

∣∣∣∣p1,j − β1,jλ1,j

1− β1,jλ1,j

θj

∣∣∣∣2 + (
λ1,jσu,j

1− β1,jλ1,j

)2 |θj|
ξw,j

}
. (42)

Proof. See Appendix A.11. This is based on Theorem 2, Theorem 3, and Proposition 4.
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Proposition 5 can give rational interpretations of certain technical or algorithmic trading

rules. These are triggered to trade whenever stock prices hit across predefined price levels

(Lo, Mamaysky, and Wang (2000); Zhu and Zhou (2009); Han, Liu, Zhou, and Zhu (2021)).

At first glance, such mechanical plans are at odds with Bayesian rationality. Proposition 5

suggests that simple trading rules for constructing a long-short portfolio may well be the

solution of sophisticated risk management. This argument agrees with Zhu and Zhou (2009)

who show that the widely used moving average trading rule can add value to asset allocation

under uncertainty about predictability or about the true model governing the stock price.

Proposition 5 may also rationalize positive feedback traders who extrapolate and chase

price trends, as discussed in the behavioral literature (DeLong et al. (1990), Barberis et al.

(2015, 2018)). The multi-asset LASSO strategy (41) shows a similar extrapolative feature.

Its two momentum “arms” are ready to long and short equities as their prices move beyond

endogenous no-trade zones. This strategy only respond to most recent winners and losers.

6.3 Sparse predictors in the cross-section of stock returns

When a market lacks weak-form efficiency, we may predict stock returns based on his-

torical stock prices and trading volumes. This is not only about the prediction of a stock

by using its own trading data (as in Theorem 2 or Proposition 5) but also applicable to

cross-sectional return predictions (as in Chinco et al. (2019)). Here, we briefly extend our

theory to the empirical quest of Chinco et al. (2019). Our discussion may provide some

intuition about the return predictability and the usefulness of LASSO in their paper. We

also propose that the LASSO may be used to filter predictive stock returns for robustness.

Consider a two-period market where a large number of stocks are traded. Some stocks

have fat tails which may be correlated with the fat tails of other stocks. Like Chinco et al.

(2019), we consider the task to predict the next-minute stock returns using the entire cross-

section return data over a short-term window, denoted as {r1,j : j = 1, ..., J}. To be specific,

we attempt to forecast stock k’s next-minute return, r̃2,k. There are perhaps a small number

of stocks that have predictive power for r̃2,k. Let Sk := {j : r̃1,j is informative about r̃2,k}
be the subset of such stocks (predictors). For simplicity, suppose we have learned about the

subset Sk. This is actually achieved in Chinco et al. (2019) by applying the LASSO to select

the subset of predictors. Suppose the economy operates in a way that the mispricing of stock

k is approximately a linear combination of the mispricings of stocks in the subset Sk:

θ̃k ≈
∑
j∈Sk

Ωk,j θ̃j =
∑
j∈Sk

Ωk,j(ṽj − p1,j), (43)
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where Ωk,j reflects the degree of predictive power of stock j on stock k. Eq. (43) serves

as an assumption. The microfoundation is beyond the scope of this paper. Correlated fat-

tail mispricings might arise from correlated news shocks or from asynchronous trading on

dispersed private signals drawn from a multivariate fat-tail distribution.

As before, our prior belief for each stock j ∈ Sk is ṽj ∼ LG(αj, ξ̃j) where ξ̃j represents

our prior uncertainty about the scale of fat-tail shocks. If the conditions for Theorem 2 hold

for each stock, then we can apply the LASSO estimate for each θ̃j (by Eq. (31)) and add

them together to form a robust estimate of the pricing error θ̃k:

θ̂robk :=
∑
j∈Sk

Ωk,j θ̂
lasso
j =

∑
j∈Sk

Ωk,jαj
1− β1,jλ1,j

β1,j

[y1,j − sign(y1,j)Kj(ξw,j)]1|y1,j |>Kj(ξw,j). (44)

In general, θ̂robk is not exactly the LASSO estimate of θ̃k, because the threshold Kj can be

different across predictors, preventing θ̂robk from being a simple soft-thresholding function.

If we normalize the initial stock price to be one (i.e., p0,j = 1) for each stock j ∈ Sk, then

the lagged return for stock j can be written as r1,j = (p1,j − p0,j)/p0,j = p1,j − 1 = λ1,jy1,j.

Suppose the short-term cross-sectional return predictability has not been exploited by any

traders (e.g., prior to the publication of Chinco et al. (2019)). Then, the order flows for each

stock can be described by Eq. (13). For stock k, the next-minute return is

r̃2,k :=
p̃2,k − p1,k

p1,k
=

λ2,kỹ2,k
p1,k

=
λ2,k(β2,kθ̃k + ũk)

1 + r1,k
≈

λ2,kβ2,k

∑
j∈Sk

Ωk,j θ̃j + λ2,kũk

1 + r1,k
. (45)

The posterior mean estimate of r̃2,k is

r̂2,k := E [r̃2,k|{r1,j : j ∈ Sk}] =
λ2,kβ2,k

1 + r1,k

∑
j∈Sk

Ωk,j

∫
wj(ξ)E

[
θ̃j
∣∣r1,j;αj, ξ̃j = ξ

]
dξ, (46)

which is a complicated nonlinear function of the vector {r1,j : j ∈ Sk}. To make a robust

estimate of r̃2,k, we can replace the above posterior means with the LASSO estimates:

r̂rob2,k :=
λ2,kβ2,k

1 + r1,k

∑
j∈Sk

Ωk,j θ̂
lasso
j (rj;αj, Kj(ξw,j)) = ak +

∑
j∈Sk,|r1,j |>λ1,jKj

bk,jr1,j. (47)

This is a simple linear function of the lagged stock returns (predictors), where

ak := −
∑

j∈Sk,|r1,j |>λ1,jKj

bk,jλ1,jKjsign(r1,j) and bk,j :=
λ2,kβ2,k

1 + r1,k
Ωk,jαj

1− β1,jλ1,j

λ1,jβ1,j

. (48)
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Eq. (47) expresses both sparsity and linearity of predictive signals in the cross-section

of stock returns. The sparsity comes from two selections, j ∈ Sk and |r1,j| > λ1,jKj. This

may help us understand the empirical results of Chinco et al. (2019) who focus on the first

selection Sk by using the LASSO to pick up the nontrivial coefficients bk,j of all candidate

predictors {r1,j : j = 1, ..., J} where J is a large number. Their variable selection (j ∈ Sk) is

different from our filtering (|r1,j| > λ1,jKj) on predictors, although both have involved the

LASSO estimates. Our argument of robust optimization will effectively impose the filtering

threshold λ1,jKj on the observed predictive stock returns. Here, λ1,j reflects the transaction

cost per unit of order flow, while Kj is the endogenous threshold that appears in the LASSO

estimation of the residual signal θ̃j.
19 The filtering effect in our theory can also “sparsify”

the selection of return predictors. Therefore, we propose an application of LASSO to directly

filter the cross-section of stock returns. Such a procedure may improve the robustness and

even the performance in the prediction task of Chinco et al. (2019).

6.4 Ridge regression from a Gaussian mixture prior

In the statistical interpretation of LASSO, the l1 penalty term is inserted into the objec-

tive function by the MAP estimation with a pure Laplace prior. In our interpretation, the

effect of l1 penalty is imposed by the max-min decision criteria and the curvature condition

(C2) in Theorem 2. (C2) helps regularize the robust optimization problem by requiring ad-

missible strategies to preserve the Bayesian-rational curvature property of Corollary 4.1(b).

In fact, the key assumption in our theory is the fat-tailed prior distribution. If we replace this

assumption with a Gaussian mixture prior and keep everything else equal, then the robust

strategy under the max-min criteria is not the LASSO but the ridge regression which con-

tains an l2 penalty in its objective function. As a result, it uniformly shrinks all coefficients

without sending any of them to zero.

Proposition 6. If, instead, arbitrageurs have a mixture Gaussian prior about the asset

liquidation value, then their equilibrium strategy, either optimal or robust, is equivalent to

the ridge regression which is a linear function of the input y1 without any finite inaction

region.

Proof. See Appendix A.12.

The conditions (C1)-(C3) in Theorem 2 are not needed in Proposition 6 any more. These

conditions are inferred from the existence of a debiased equilibrium when traders have un-

certain fat-tail priors. If we remove the assumption of fat tails, we are back to the Gaussian

19Chinco et al. (2019) have taken into account the bid-ask spread in their LASSO-implied strategy. This
spread cost alone may not fully capture the filtering effect of λ1,jKj derived from our robust optimization.
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world where learning problems are usually linear. Thus, Proposition 6 serves as a control to

demonstrate that the fat-tail distribution is the key assumption in this paper.

Ridge regression is another basic and popular machine learning method. Its l2 penalty has

been integrated in other techniques. For example, the elastic net is a regularized regression

that linearly combines the l1 and l2 penalties of the LASSO and ridge methods (Hastie

et al. (2009)). While Proposition 6 seems to achieve another subject in rationalizing the

ridge regression, we want to focus on the LASSO in this paper. It is left for future work to

understand the rationality (if any) underneath many other machine learning techniques.

7 Conclusion

Machine learning seems an inevitable trend in the era of big data. Are machine learn-

ing methods heuristic approximations or rational choices for economic agents? This paper

rationalizes one of the most widely used machine learning method, the LASSO algorithm.

Unlike the interpretation proposed by Tibshirani (1996), our rationalization of LASSO does

not invoke the heuristic MAP (i.e., the posterior mode) estimation or hinge on the restrictive

assumption of a pure fixed Laplace prior. In our setup, agents (i.e., arbitrageurs) consis-

tently use the Bayesian-rational learning (i.e., the posterior mean estimate) to evaluate all

possible states. They have sequential rationality by using dynamic programming to solve

their well-defined max-min expected utility function. Under general fat-tailed model risks,

their robust strategy is a LASSO strategy. We also show that this robust LASSO strategy

can reduce traders’ competition even when the number of them becomes infinite. This in-

duces a seemingly collusive outcome as traders’ aggregate profit does not vanish even in the

“competitive” limit. This is a novel mechanism for limited arbitrage.

This paper provides a theoretical demonstration that brings a popular machine learning

method within the framework of neoclassic theory of financial economics. This may not be a

unique example, considering that there are a set of variants developed from or related to the

original LASSO. It calls for more interdisciplinary studies like this paper to develop a better

understanding of the economic rationales and implications of other widely used techniques.
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A Appendix

A.1 Example of Microfoundation

Here, we discuss one microfoundation for the trading environment which can serve as the

background of our model setup. Consider a two-period model of Kyle (1985) with multiple

(M ≥ 1) informed traders as extended by Holden and Subrahmanyam (1992). Suppose

all market participants (informed traders and market makers) hold the common knowledge

that the stock liquidation value is normally distributed. Then there exists a unique subgame

perfect linear equilibrium, based on the general procedures of Proposition 1 in Holden and

Subrahmanyam (1992). We use the same notation Σt := Var(ṽ0|p̃t, p̃t−1, ...p̃0) for t ∈ {0, 1, 2},
which is the posterior variance of ṽ0 conditional on the price history up to time t. There are

competitive market makers who will accommodate the following aggregate order flows:

ỹ1 =
∑M

m=1
x̃m,1 + ũ1 = β1(ṽ − p0) + ũ1, (A1)

ỹ2 =
∑M

m=1
x̃m,2 + ũ2 = β2(ṽ − p̃1) + ũ2, (A2)

where x̃m,t denotes the order placed by the m-th informed trader at time t and βt represents

the aggregate informed trading intensity at time t. In the conjectured linear equilibrium,

market makers follow the linear pricing strategies below:

p̃1 = p0 + λ1

(∑M

m=1
x̃m,1 + ũ1

)
= p0 + λ1ỹ1, (A3)

p̃2 = p̃1 + λ2

(∑M

m=1
x̃m,2 + ũ2

)
= p̃1 + λ2ỹ2, (A4)

where the pricing coefficients (Kyle lambdas) are given by

λ1 =
β1Σ1

σ2
u

, λ2 =
β2Σ2

γσ2
u

, (A5)

As a boundary condition, it is easy to derive the total intensity of informed trading at t = 2:

β2 =
M

λ2(M + 1)
. (A6)

By backward induction, we can further derive the total intensity of informed trading at t = 1,

β1 =
δM(M + 1)2 − 2M

λ1[δ(M + 1)3 − 2M ]
, (A7)
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where δ := λ2/λ1 is the ratio of Kyle lambdas. These results imply that

1− β1λ1 =
δ(M + 1)2

δ(M + 1)3 − 2M
, 1− β2λ2 =

1

M + 1
.

The optimal trading strategy for each informed trader is

x̃m,1 =
β1

M
(ṽ − p0) =

δ(M + 1)2 − 2

δ(M + 1)3 − 2M
· ṽ − p0

λ1

, (A8)

x̃m,2 =
β2

M
(ṽ − p1) =

ṽ − p̃1
λ2(M + 1)

. (A9)

The Bayesian update of the posterior variance about ṽ follows

Σ2 = (1− β2λ2)Σ1 =
Σ1

M + 1
, Σ1 = (1− β1λ1)Σ0 =

δ(M + 1)2σ2
v

δ(M + 1)3 − 2M
. (A10)

Combining (A5), (A6), (A7), (A8), (A9), and (A10), we find the expressions of λ1 and λ2:

λ1 =

√
δM(M + 1)2(δ(M + 1)2 − 2)

δ(M + 1)3 − 2M
· σv

σu

, (A11)

λ2 = δλ1 =

√
δM/γ

δ(M + 1)3 − 2M
· σv

σu

. (A12)

In order to have λ1 > 0 and λ2 > 0, it is equivalent to impose δ(M + 1)2 > 2. This will

guarantee that the denominators in (A11) and (A12) are strictly positive, δ(M+1)3−2M > 0.

These allow us to rewrite the ratio of Kyle lambdas which is equal to δ by definition:

λ2
2

λ2
1

=
δ(M + 1)3 − 2M

δγ(M + 1)4 − 2γ(M + 1)2
= δ2, (A13)

By Eq. (A13), the equilibrium ratio δ = δ(M,γ) must satisfy the cubic equation:

(M + 1)4γδ3 − 2(M + 1)2γδ2 − (M + 1)3δ + 2M = 0, s.t. δ(M + 1)2 > 2. (A14)

Huddart et al. (2001) studied the two period Kyle model with a single informed trader

(M = 1) and constant noise trading volatility (γ = 1). They obtain the cubic equation

8δ3− 4δ2− 4δ+1 = 0 which coincides with (A14) if we set M = 1 and γ = 1. The economic

solution is the largest root δ ≈ 0.901. Similarly, when M > 1, there is a unique solution that

meets the second order condition and the requirement λ1 > 0 and λ2 > 0.

This microfoundation is used in all our numerical examples.
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A.2 Proof of Theorem 1

Since arbitrageurs’ prior is non-directional, we conjecture first and verify later that they

do not trade in the first period, Z1,n = 0, for n = 1, ..., N . Under this conjecture, we can

solve their optimal strategy at t = 2. Arbitrageurs conjecture the market-clearing price as

p̃2 = p̃1 + λ2

[
β2(ṽ − p̃1) +

∑N

n=1
Z2,n(p̃1) + ũ2

]
. (A15)

They estimate ṽ conditional on the observed order flow y1 and the Laplacian-Gaussian prior

ṽ ∼ LG(α, ξ̃). For any fixed prior ξ̃ = ξ ∈ (0,∞), the n-th trader solves her optimal strategy,

Zo
2,n(p1;α, ξ) = argmax

z2,n

EA [(ṽ − p̃2)z2,n|p1] , (A16)

where A denotes the prior belief ṽ ∼ LG(α, ξ). We can use Zo
2,−n =

∑
n′ ̸=n Z

o
2,n′ to denote

the aggregate trading by all arbitrageurs except the n-th one. The first order condition is

EA[ṽ|p1]− p1 = λ2

(
β2E

A[ṽ|p1]− β2p1 + 2z2,n + EA[Zo
2,−n|p1]

)
. (A17)

Let v̂(p1;α, ξ) = EA[ṽ|p1] be the posterior mean estimate of ṽ. Then the strategy solution is

Zo
2,n(p1;α, ξ) =

(1− β2λ2)(v̂ − p1)

2λ2

−
EA[Zo

2,−n(p1)|p1]
2

(A18)

The n-th arbitrageur conjectures that every other arbitrageur solves the same problem and

trades Zo
2,n′ = η · (v̂−p1) for any n′ ̸= n, with a coefficient η to be determined. This suggests

Zo
2,n(p1;α, ξ) =

v̂ − p1
2λ2

[1− β2λ2 − ηλ2(N − 1)] . (A19)

As arbitrageurs make the same conjecture in a symmetric equilibrium, they can find that

η = 1−β2λ2−ηλ2(N−1)
2λ2

, which has a unique solution

η =
1− β2λ2

λ2(N + 1)
> 0. (A20)

Since p1 = p0 + λ1y1, their optimal strategy at t = 2 under the fixed prior LG(α, ξ) is

Zo
2,n(y1;α, ξ) =

1− β2λ2

λ2(N + 1)
(v̂(p1;α, ξ)− p1) = (1− β2λ2)

θ̂(y1;α, ξ)

λ2(N + 1)
, for n = 1, ..., N.

(A21)

Let x̃1 := β1(ṽ− p0) denote the total informed order flow at t = 1. Then, arbitrageurs’ prior
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about x̃1 is another Laplacian-Gaussian mixture distribution:

f(x1) =
α

2β1ξ
exp

(
−|x1|
β1ξ

)
+

1− α

β1

√
2πσ2

v

exp

(
− x2

1

2(β1σv)2

)
. (A22)

By Bayes’ rule, the posterior probability of x1 conditional on y1 is found to be

f(x1|y1) = f(y1, x1)/f(y1) = f(y1|x1)f(x1)/f(y1)

=
α/(2β1ξ)√
2πσ2

uf(y1)
exp

[
−(y1 − x1)

2

2σ2
u

− |x1|
β1ξ

]
+

(1− α)/β1

2πσuσvf(y1)
exp

[
−(y1 − x1)

2

2σ2
u

− x2
1

2(β1σv)2

]
.

By direct integration, the probability density function of ỹ1 = β1(ṽ − p0) + ũ1 = x̃1 + ũ1 is

f(y1) =
α

4β1ξ
exp

(
σ2
u

2(β1ξ)2

)[
e
− y1

β1ξ erfc

(
σ2
u/(β1ξ)− y1√

2σu

)
+ e

y1
β1ξ erfc

(
σ2
u/(β1ξ) + y1√

2σu

)]
+

1− α√
2π(σ2

u + (β1σv)2)
exp

[
− y21
2(σ2

u + (β1σv)2)

]
. (A23)

Define two dimensionless parameters: κ(ξ) := σu/(β1ξ) and ϱ := (β1σv/σu)
2. By rescaling

the order flows as y1 = yσu, we can express f(y1 = yσu) in a dimensionless form

f(y) =
ακe

κ2

2

4

[
e−κyerfc

(
κ− y√

2

)
+ eκyerfc

(
κ+ y√

2

)]
+

1− α√
2π(1 + ϱ)

exp

[
− y2

2(1 + ϱ)

]
,

which is a symmetric function and decays exponentially at large |y|. Bayes’ rule implies that

EA[x̃1 = xσu|y1 = yσu, ξ] = σu

∫ ∞

−∞
xf(x|y)dx = σu

∫ ∞

−∞
xf(y|x)f(x)/f(y)dx. (A24)

Given all the above results, we can derive the posterior expectation of ṽ:

v̂(y) = EA[ṽ|y] = αEA[ṽ|y, s = 1] + (1− α)EA[ṽ|y, s = 0]

=
αξκ(y − κ)erfc

(
κ−y√

2

)
erfc

(
κ−y√

2

)
+ e2κyerfc

(
κ+y√

2

) +
αξκ(y + κ)erfc

(
κ+y√

2

)
erfc

(
κ+y√

2

)
+ e−2κyerfc

(
κ−y√

2

) + (1− α)λ1yσu. (A25)

One can verify that v̂(y) is an increasing function of y := p1/(λ1σu) and its shape depends

on two dimensionless parameters, α and κ(ξ). Asymptotically, v̂ becomes linear in y1:

v̂(y1) → α[y1 − sign(y1)κσu]/β1 + (1− α)λ1y1, as |y1| → ∞. (A26)
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A.3 Proof of Proposition 1

Now we examine the equilibrium existence condition. If the n-th trader does not deviate

from the conjectured no-trade strategy at t = 1, her optimal strategy should be given by

the original result Zo
2,n(p1;α, ξ) = η · [v̂(p1;α, ξ)− p1], where p1 = p0 + λ1y1 = λ1(β1v + u1).

To verify that no arbitrageur would trade at t = 1, we have to examine the condition (17).

Suppose the n-th trader deviates from the no-trade strategy by placing an order Z ′
1,n=z1 ̸= 0.

Then the actual total order flow at t = 1 will be ỹ′1 = β1ṽ+ z̃1 + ũ1, instead of ỹ1 = β1ṽ+ ũ1

in the conjectured equilibrium. Taking as given Zo
2,n′(y′1;α, ξ) = η · [v̂(y′1;α, ξ)−λ1y

′
1] for any

other trader n′ ̸= n, the n-th arbitrageur can solve her best response at t = 2 conditional on

her knowledge of y1 and z1. It is found to be

Z ′
2,n(y

′
1;α, ξ) =

v̂(y1;α, ξ)− λ1y
′
1

2λ2

−
EA[β2(ṽ − λ1y

′
1)|y1, z1] + EA[Zo

2,−n(y
′
1;α, ξ)|y1, z1]

2

=
1− β2λ2

λ2(N + 1)

(
[v̂(y1;α, ξ)− λ1y

′
1] +

N − 1

2
[v̂(y1;α, ξ)− v̂(y′1;α, ξ)]

)
.(A27)

We add a few useful notations:

∆v̂ := v̂(ỹ′1;α, ξ)− v̂(ỹ1;α, ξ), ∆P1 := λ1(ỹ
′
1 − ỹ1) = λ1z1, ∆P2 := p̃2(Z

′)− p̃2(Z)

∆Z := Z ′
2,n(y

′
1;α, ξ)− Zo

2,n(y1;α, ξ) = −(1− β2λ2)λ1z1
λ2(N + 1)

− (1− β2λ2)(N − 1)

2(N + 1)λ2

∆v̂.

Note that Z′ := [⟨0, Zo
2,1⟩, ...⟨Z ′

1,n, Z
′
2,n⟩, ...⟨0, Zo

2,N⟩] differs from Z := [⟨0, Zo
2,1⟩, ...⟨0, Zo

2,N⟩]
only in the n-th element (Z′)n = ⟨Z ′

1,n, Z
′
2,n⟩. We can derive the following result:

∆P2 = λ1z + λ2[∆Z + β2(ṽ − λ1ỹ
′
1)− β2(ṽ − λ1ỹ1) + Zo

2,−n(ỹ
′
1)− Zo

2,−n(ỹ1)] = −λ2∆Z.

Note that EA[ỹ1z1] = 0 and EA[v̂(ỹ1; ξ)z1] = 0 because ỹ1 = X1(ṽ) + ũ1 is symmetrically

distributed and v̂(−y1; ξ) = −v̂(y1; ξ). The extra payoff from this unilateral deviation is

∆Πd
z,n = EA[(ṽ − p̃2(Z

′))Z ′
2,n + (ṽ − p̃1(Z

′))z1 − (ṽ − p̃2(Z))Z
o
2,n]

= −λ1z
2
1 + EA[EA[(ṽ − p̃2(Z) + λ2Z

′
2,n)∆Z|ỹ1]]

= −λ1z
2
1 + EA

[(
v̂(ỹ1;α, ξ)− λ1ỹ1

N + 1
+ λ2∆Z

)
·∆Z

]

= −λ1z
2
1 + (1− β2λ2)

2
EA

[(
λ1z1 +

N−1
2

∆v̂
)2]

(N + 1)2λ2

−(1− β2λ2)
(N − 1)EA [(v̂(ỹ1;α, ξ)− λ1ỹ1)∆v̂]

2(N + 1)2λ2

. (A28)
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It is useful to prove that EA [(v̂(ỹ1;α, ξ)− λ1ỹ1)(∆v̂ − [α/β1 + (1− α)λ1]z1)] ≥ 0. First, we

consider z1 ≥ 0, under which ∆v̂(y1, z1) ≤ lim|y1|→∞ ∆v̂(y1, z1) = [α/β1 + (1 − α)λ1]z1 and

the equality holds at infinity. This follows from Eq. (A26) and that v̂ is always convex for

y1 ≥ 0 and concave for y1 ≤ 0. Second, given v̂(−y1;α, ξ) = −v̂(y1;α, ξ), it follows that

∆v̂(y1 − z1
2
, z1) = v̂(y1 +

z1
2
;α, ξ)− v̂(y1 − z1

2
;α, ξ) is an even function of y1 and its minimum

is achieved at y1 = 0. This means ∆v̂(y1, z1) is shifted to the left and its minimum locates at

y1 = − z1
2
. Hence, ∆v̂(y1, z1)− [α/β1 + (1− α)λ1]z1 is non-positive and its minimum locates

at y1 = − z1
2
≤ 0. Given the distributional symmetry of ỹ1 and the fact that v̂(y1;α, ξ)−λ1y1

is an odd function, it follows that EA [(v̂(ỹ1;α, ξ)− λ1ỹ1)(∆v̂ − [α/β1 + (1− α)λ1]z1)] ≥ 0.

The same inequality holds for z1 ≤ 0 under which ∆v̂(y1, z1) − [α/β1 + (1 − α)λ1]z1 ≥ 0,

with its maximum located at y1 = − z1
2

≥ 0. Based on the obvious result (by symmetry)

that EA [(v̂(ỹ1;α, ξ)− λ1ỹ1)z1] = 0, the previous inequality implies that

∆Πd
z,n ≤ −λ1z

2
1 + (1− β2λ2)

2
EA

[(
λ1z1 +

N−1
2

∆v̂
)2]

(N + 1)2λ2

−(1− β2λ2)
(N − 1)[α/β1 + (1− α)λ1]

2(N + 1)2λ2

EA [(v̂(ỹ1;α, ξ)− λ1ỹ1)z1]

= −λ1z
2
1 + (1− β2λ2)

2E
A [

(2λ1z1 + (N − 1)∆v̂)2
]

4(N + 1)2λ2

. (A29)

As 0 ≤ ∆v̂(y1, z1) ≤ (α/β1+(1−α)λ1)z1 for z1 ≥ 0 and (α/β1+(1−α)λ1)z1 ≤ ∆v̂(y1, z1) ≤ 0

for z1 ≤ 0, the last expression of (A29) has an upper bound which is achieved when ∆v̂ =

(α/β1 + (1− α)λ1)z1. This yields

∆Πd
z,n(z1;α, ξ) ≤ −λ1z

2
1 + (1− β2λ2)

2λ1z
2
1

[2 + (N − 1)(α/(β1λ1) + 1− α)]2

4δ(N + 1)2
(A30)

Intuitively, the maximal benefit for the n-th trader (who unilaterally deviates) is achieved

when arbitrageurs have the same extreme prior ξ → ∞. In this limit, their reactions to the

past order flows become the strongest and exactly linear:

Zo
2,n(y1;α, ξ → ∞) =

α(1− β1λ1)(1− β2λ2)

β1λ2

y1
N + 1

. (A31)

It is easy to verify that limξ→∞ ∆v̂(ỹ1, z1;α, ξ) = αz1/β1 + (1− α)λ1z1 such that

lim
ξ→∞

∆Πd
z,n(z1;α, ξ) = −λ1z

2
1 + (1− β2λ2)

2λ1z
2
1

[2 + (N − 1)(α/(β1λ1) + 1− α)]2

4δ(N + 1)2
(A32)
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which is exactly the right-hand side of (A30). Thus, ∆Πd
z,n < 0 holds if the above coefficient

in front of z21 is negative. This leads to the equilibrium existence condition (23), i.e.,

1 +
α(1− β1λ1)

β1λ1

· N − 1

N + 1
<

2
√

λ2/λ1

1− β2λ2

. (A33)
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Figure 9. The critical value δ∗(N) as a function of the number of arbitrageurs N . Here, λt

and βt are determined in a two-period Kyle model (M = 1).

Consider the special case M = 1 in the example of microfoundation in Appendix A.1.

This corresponds to a two-period a Kyle model with a single informed trader. When α = 1,

the inequality (23) lead to the condition δ > δ∗(N) where δ := λ2/λ1 is the ratio of Kyle

lambdas and δ∗(N) is the largest root of the nonlinear equation:

1 +

(
N − 1

N + 1

)
2δ

2δ − 1
= 4

√
δ. (A34)

We find that δ∗(N=2) ≈ 0.5951, δ∗(N=3) ≈ 0.6458, and δ∗(N=10) ≈ 0.7489. Moreover,

limN→∞ δ∗(N) ≈ 0.8117, which is the largest root of the equation: 64δ3−80δ2+24δ−1 = 0.

The critical values of δ∗(N) are plotted in Figure 9. The equilibrium ratio δ can vary with

the ratio of noise trading volatilites (γ). In the liquidity regime δ > δ∗(N), it is unprofitable

for any arbitrageur to trade in the first period, that is, ∆Πd
z,n(z1; ξ) < 0 for z1 ̸= 0. This

confirms our conjecture that arbitrageurs will not trade at t = 1. When δ > δ∞ ≈ 0.8117,

the equilibrium can host an infinite number of arbitrageurs.
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A.4 Proof of Corollary 4.1

(a) follows from the property that v̂(y1;α, ξ) is an odd function: v̂(−y1) = −v̂(y1).

(b) follows from the property that v̂(y1;α, ξ) is convex for y1 ≥ 0 and concave for y1 ≤ 0.

(c) follows from the result that lim|y1|→∞ v̂(y1) = (α/β1)[y1− sign(y1)κσu]+ (1−α)λ1y1.

(d) follows from the condition ∂
∂y1

Zo
2,n(y1;α, ξ = ξc)

∣∣
y1=0

= 0, which is equivalent to

1 + κ(ξc)
2 − κ(ξc)e

−κ(ξc)2/2

erfc(κ(ξc)/
√
2)

√
2

π
= λ1β1 (A35)

The left-hand side of (A35) is a monotonic function of κ, which decreases from 1 to 0 when

κ increases from 0 to ∞. The right-hand side, λ1β1, is a constant that takes a value between

0 and 1. Hence, Eq. (A35) admits a unique positive solution κ∗ > 0. Since κ := σu/(β1ξ),

we can find the unique solution (Figure 10), ξc = σu/(β1κ
∗), which depends on σu and σv.

From the curvature property of Zo
2,n(y1;α, ξ), we have that

∂2Zo
2,n

∂y21
> 0 for y1 ≥ 0 and

∂2Zo
2,n

∂y21
< 0 for y1 ≤ 0. Therefore, when ξ ≥ ξc, we have

∂Zo
2,n(y1;α,ξ)

∂y1
≥ 0, showing that

Zo
2,n(y1;α, ξ) is an increasing function of y1 which has only one root at y1 = 0. In contrast,

Zo
2,n(y1;α, ξ) becomes a non-monotonic function when ξ < ξc and has three different roots.

0 0.1 0.2 0.3 0.4 0.5
1.4

1.6

1.8

2

2.2

Figure 10. The critical value ξc as a function of the value of λ1β1, where λ1 and β1 are
determined in a two-period Kyle model.
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A.5 Proof of Corollary 4.2

First, when ξL < ξc ≤ ξH , arbitrageurs’ best response at t = 2 is to stop trading on any

y1 ∈ [−KL, KL] where KL is the positive root of the equation Zo
2,n(y1;α, ξL) = 0. If other

arbitrageurs do not trade on y1 ∈ [−KL, KL], any individual arbitrageur would not deviate

because buying or selling this asset could lose money in case when the true prior turns out

to be on the opposite side of such trading. For any |y1| > KL, the max-min strategy simply

follows Zo
2,n(y1;α, ξL). This is because any unilateral deviation from this most conservative

strategy may lose money in case that the reality happens to be the lowest prior ξL. Thus,

no one would trade more than the most conservative strategy Zo
2,n(y1;α, ξL)1|y1|>KL

.
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Figure 11. The equilibrium max-min strategies when ξc < ξL < ξH and ξL < ξH < ξc.

Second, when ξc ≤ ξL < ξH , the two extreme strategies Zo
2,n(y1;α, ξH) and Zo

2,n(y1;α, ξL)

agree on the trading direction for all realized y1. Thus, the max-min strategy is Zo
2,n(y1;α, ξL),

as shown by the red solid line in the left panel of Figure 11.

Last, when ξL < ξH < ξc, both Zo
2,n(y1;α, ξL) and Zo

2,n(y1;α, ξH) are non-monotonic, and

each has three roots. The max-min strategy is Zo
2,n(y1;α, ξH)1|y1|<KH

+Zo
2,n(y1;α, ξL)1|y1|>KL

,

where KH represents the positive root of the equation Zo
2,n(y1;α, ξH) = 0. Since KH < KL,

this strategy has two no-trade zones, [−KL,−KH ] and [KH , KL], and three trading zones,

[−KH , KH ], [−∞,−KL], and [KL,∞]. The solution is shown by the red solid line in the

right panel of Figure 11. It is too complicated to be practically relevant.

Note that KL and K(ξL) are very close but not identical. KL is the positive point where

Z2,n(y1;α,K(ξL)) crosses the horizontal y1-axis, whereas K(ξL) is the horizontal intercept of

the asymptote of Z2,n(y1;α,K(ξL)). The difference between KH and K(ξH) is similar.
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A.6 Proof of Theorem 2

First, we verify that, under (C1), (C2), and (C3), each arbitrageur will not deviate from

the strategy (28) at t = 2. By symmetry, it suffices to consider the positive domain.

For any realized order flow y1 ∈ [0, K(ξw)], the n-th arbitrageur will not deviate to buy

any share of this asset, because choosing Z ′
2,n > 0 may lose money under the lowest prior ξL:

EA[∆π̃z,n|y1, ξ̃ = ξL] = EA
[(
ṽ − λ1y1 − λ2[β2(ṽ − λ1y1) + Z ′

2,n + ũ2]
)
Z ′

2,n

∣∣y1, ξ̃ = ξL

]
− 0

= (1− β2λ2)θ̂(y1;α, ξL)Z
′
2,n − λ2Z

′2
2,n < 0. (A36)

The inequality is due to (1−β2λ2)θ̂(y1;α, ξL)=λ2(N+1)Z2,n(y1;α, ξL) < 0 for y1 ∈ [0, K(ξw)],

which is implied by (C1) K(ξw) < KL, (C3) ξL < ξc, and Corollary 4.1(d). Similarly, each

arbitrageur would not deviate by choosing any Z ′
2,n < 0 as it may lose money under ξH :

EA[∆π̃z,n|y1, ξ̃ = ξH ] = (1− β2λ2)θ̂(y1;α, ξH)Z
′
2,n − λ2Z

′2
2,n < 0. (A37)

The inequality is due to (1 − β2λ2)θ̂(y1;α, ξH)=λ2(N + 1)Z2,n(y1;α, ξH) > 0 since ξH > ξc.

By the max-min criterion, arbitrageurs will not deviate from no trading for y1 ∈ [0, K(ξw)].

For y1 ∈ (K(ξw),∞), each arbitrageur will not trade less than the amount of Z∞(y1;α, ξw),

because doing this would violate either (C1) or (C2) or both. Each arbitrageur will not

trade more that Z∞(y1;α, ξw) either, because choosing any Z ′
2,n(y1) > Z∞(y1;α, ξw) may

lose more or earn less than the buying decision made along Z∞(y1;α, ξw). Define Z∆ :=

Z ′
2,n(y1)− Z∞(y1;α, ξw). The difference of payoffs from this unilateral deviation under ξL is

EA[∆π̃z,n|y1, ξL] = EA [(
ṽ − λ1y1 − λ2[β2(ṽ − λ1y1) + Z ′

2,n + Z2,−n + ũ2]
)
Z ′

2,n

∣∣y1, ξL]
−EA [

(ṽ − λ1y1 − λ2[β2(ṽ − λ1y1) + Z∞ + Z2,−n + ũ2])Z
∞∣∣y1, ξL]

= EA
[
Z∆[(1− β2λ2)θ̃ − λ2(Z

∞ + Z2,−n)]
∣∣y1, ξL]− λ2Z

′
2,nZ∆. (A38)

Let ZL := (1− β2λ2)
θ̂(y1;α,ξL)
λ2(N+1)

. Since everyone else follows Z∞ and ZL < Z∞ < Z ′
2,n, we have

EA[∆π̃z,n|y1, ξL] = λ2Z∆[(N + 1)ZL − Z∞ − (N − 1)Z∞]− λ2Z
′
2,nZ∆

= λ2Z∆[(N + 1)ZL −NZ∞ − Z ′
2,n] < 0. (A39)

Thus, each arbitrageur will only trade Z∞(y1;α, ξw) when y1 > K(ξw). By symmetry, the

full equilibrium strategy is Z∞(y1;α, ξw)1|y1|>K(ξw). No one will deviate from it at t = 2.

The equilibrium condition (C1) is central to Theorem 2. This is endogenously implied

by the existence of a debiased equilibrium. If (C1) is absent, (C3) alone is sufficient to
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direct the economy to the equilibrium in Corollary 4.2 and the presence of (C2) makes

no difference. When (C1) holds, (C2) plays an important role in regularizing the robust

optimization problem. Without (C2), the other conditions (C1) and (C3) cannot support

the equilibrium in Theorem 2. This is because if candidate strategies were allowed to be

non-convex in the positive domain of y1 or non-concave in the negative domain, then for

any strategy that satisfies (C1), arbitrageurs would always find some deviations that trade

more conservatively than that strategy. Such deviations are permitted by the gap between

Z∞(y1;α, ξw) and Z∞(y1;α, ξL), which is an implication of (C1).

Under (C1) and (C2), all admissible strategies must be within the shaded area in Fig-

ure 2, enclosed by Zo
2,n(y1;α, ξ → 0), Zo

2,n(y1;α, ξ → ∞), and Z∞(y1;α, ξw). This can be

understood by just looking at the positive domain of y1. It is apparently irrational for any

strategy to go above Zo
2,n(y1;α, ξ → ∞) or below Zo

2,n(y1;α, ξ → 0). Moreover, (C2) means

that the first derivative of any admissible strategy is non-decreasing in the positive domain

of y1. Such a strategy cannot cross the asymptote Z∞(y1;α, ξw) without violating (C1).

It remains to verify that no arbitrageur would find it utility-improving to trade at t = 1,

given that other arbitrageurs only trade at t = 2 using the strategy (28). The proof here is

similar to A.2 for Theorem 1. Intuitively, each arbitrageur would not trade at t = 1 since it

would risk trading on the opposite side of the true fat-tail signal. But it might be profitable

if other arbitrageurs were overly misled by the secret “disruptive” trading. Suppose the n-th

arbitrageur is an instigator who considers to trade Z ′
1,n = z1 ̸= 0, in an effort to confuse other

arbitrageurs (now momentum traders). To save notations, we will use K to represent K(ξw).

Given her market power and unilateral deviation, the instigator understands the composition

of order flows: ỹ′1 = β1(ṽ−p0)+z1+ũ1 and ỹ′2 = β2(ṽ−λ1ỹ
′
1)+Z ′

2,n(ỹ1, z1)+Z2,−n(ỹ
′
1;α,K)+ũ2.

Here, Z2,−n :=
∑

n′ ̸=n Z2,n′(y′1;α,K) is the total order flow placed by other arbitrageurs who

will estimate θ̃ = ṽ − λ1y
′
1 based on the observed y′1 without knowing that y′1 contains an

uninformed order flow z1 from the instigator. Of course, the instigator’s estimate of θ̃ is

correctly based on y1 = β1(ṽ− p0) + u1 instead of y′1, because she knows the order z1 placed

by herself. Being averse to the model risk, the instigator has the objective function:

max
z2

min
ξ

EA[(ṽ − λ1ỹ
′
1 − λ2ỹ

′
2)z2|y1, z1, α, ξ], (A40)

The instigator can exploit the possibility that other arbitrageurs are (unknowingly) biased

by her uninformed trade z1 since they follow the strategy Z2,n′(y′1 = y1 + z1;α,K) for each

n′ ̸= n. For a given prior ξ ∈ [ξL, ξH ], the instigator’s optimal strategy at t = 2 is

Zo
2,n(y1, z1;α, ξ) = (1− β2λ2)

EA[ṽ|y1, α, ξ]− λ1(y1 + z1)

2λ2

− 1

2

∑
n′ ̸=n

Z2,n′(y1 + z1;α,K). (A41)
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Since the last term is independent of her prior ξ, it will remain in her max-min strategy:

Z ′
2,n(y1, z1) = argmax

z2

min
ξ

EA [(ṽ − λ1y
′
1 − λ2(y

′
1 + z2))z2|y1, z1, α, ξ]−

1

2

∑
n′ ̸=n

Z2,n′(y′1;α,K).

The first term is actually the problem we solved earlier as if there was only one arbitrageur

and the first-period order flow was y′1 instead of y1. Nonetheless, the instigator’s estimate

of ṽ is correctly based on y1 (not y′1). By deducting her own price impact λ1z1 from this

problem, she can find that the max-min solution to the remaining problem is simply

Z2,n(y1;α,K)
∣∣
N=1

=
α(1− β1λ1)(1− β2λ2)

2β1λ2

[y1 − sign(y1)K]1|y1|>K =
N + 1

2
Z2,n(y1;α,K).

Taking into account all those results, she will find her max-min strategy given by

Z ′
2,n(y1, z1) =

(N + 1)

2
Z2,n(y1;α,K)− (1− β2λ2)

λ1z1
2λ2

− N − 1

2
Z2,n(y

′
1;α,K)

= Z2,n(y1;α,K)− (1− β2λ2)
z1
2δ

− α(1− β1λ1)(1− β2λ2)(N − 1)

2β1λ2(N + 1)
D(y1, z1), (A42)

where we define the difference between two soft-thresholding functions:

D(y1, z1) := [y1 + z1 − sign(y1 + z1)K]1|y1+z1|>K − [y1 − sign(y1)K]1|y1|>K . (A43)

Ex ante, the expected trading profit of this instigator (the n-th arbitrageur) is

Πd
z,n(z1) = EA[(ṽ − λ1ỹ

′
1)z1 + (ṽ − λ1ỹ

′
1 − λ2ỹ

′
2) · Z ′

2,n(ỹ1, z1)], (A44)

and hence the extra profit attributable to her unilateral deviation ⟨Z ′
1,n, Z

′
2,n⟩ is

∆Πd
z,n(z1) = Πd

z,n(z1)− EA[(ṽ − λ1ỹ1 − λ2ỹ2) · Z2,n(ỹ1;α,K)], (A45)

where ỹ1 = β1(ṽ− p0) + ũ1 and ỹ2 = β2(ṽ− λ1ỹ1) +
∑N

n=1 Z2,n(ỹ1;α,K) + ũ2. We can derive

∆Πd
z,n = −λ1z

2
1 + λ2E

A[(Z ′
2,n(ỹ1, z1))

2]− λ2E
A[(Z2,n(ỹ1;α,K))2]

= −λ1z
2
1 + λ2E

A
[(

(1− β2λ2)
z1
2δ

+
α(1− β1λ1)(1− β2λ2)(N − 1)

2β1λ2(N + 1)
D

)2

−α(1− β1λ1)(1− β2λ2)(N − 1)

β1λ2(N + 1)
Z2,nD

]
. (A46)

By symmetry, ∆Πd
z,n(−z1) = ∆Πd

z,n(z1). We can simply focus on the case of z1 > 0. It takes
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some straightforward but tedious calculation to arrive at the following result (when z1 > 0):

Z2,n(y1;α,K) · (D − z1) =

max {A(y1, z1), 0} if z1 ≤ 2K

max {A(y1, z1)1y1<K−z1 +B(y1, z1)1y1≥K−z1 , 0} if z1 > 2K

where A(y1, z1) := −α(1−β1λ1)(1−β2λ2)
β1λ2(N+1)

(y1+K)(y1+z1+K) is a quadratic function of y1 for any

given z1 and B(y1, z1) := A(K − z1, z1)
y1+K
2K−z1

is a linear function of y1 for any given z1. The

above result proves that Z2,n(ỹ1;α,K)D(ỹ1, z1) ≥ Z2,n(ỹ1;α,K)z1, which further implies

∆Πd
z,n ≤ −λ1z

2
1 + λ2E

A
[(

(1− β2λ2)
z1
2δ

+
α(1− β1λ1)(1− β2λ2)(N − 1)

2β1λ2(N + 1)
D

)2

≤ −λ1z
2
1 + λ2

[
1− β2λ2

2δ
+

α(1− β1λ1)(1− β2λ2)(N − 1)

2β1λ2(N + 1)

]2
z21 . (A47)

The second step is by the property that 0 ≤ D ≤ z1 if z1 ≥ 0 and z1 ≤ D ≤ 0 if z1 ≤ 0 and

EA[Z2,n]z1 = 0. The equality in (A47) holds when ξw → ∞ so that K(ξw) → 0 and D → z1.

It is not a profitable deviation (i.e., ∆Πd
z,n < 0) if the coefficient of z21 in (A47) is negative.

This coefficient condition leads to the same equilibrium condition (23) in Proposition 1:

1 +
α(1− β1λ1)

β1λ1

· N − 1

N + 1
<

2
√

λ2/λ1

1− β2λ2

, (A48)

𝐷𝐷 𝑦𝑦1, 𝑧𝑧1
𝑍𝑍2,𝑛𝑛 𝑧𝑧1
𝑍𝑍2,𝑛𝑛 𝐷𝐷 − 𝑧𝑧1

𝑦𝑦1

𝑧𝑧1 > 2𝐾𝐾

Figure 12. D(y1, z1), Z2,n(y1;α,K)z1, and Z2,n(y1;α,K) · (D − z1) when z1 > 2K.
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A.7 Proof of Theorem 3

By definition, if a strategy can be written as a soft-thresholding function, then we may

map it into a LASSO strategy which involves some LASSO estimates of economic variables.

For α > 0, the robust strategy (28) in Theorem 2 is a soft-thresholding function of y1:

Z2,n(y1;α,K(ξw)) = Z∞(y1;α, ξw)1|y1|>K(ξw) =
α(1− β1λ1)(1− β2λ2)

β1λ2(N + 1)
S(y1;K(ξw)). (A49)

Similar to the optimal strategy (19), the robust strategy (A49) can be written as

Z2,n(y1;α,K(ξw)) =
α(1− β2λ2)

λ2(N + 1)
· θ̂imp(y1; ξw), (A50)

where θ̂imp = 1−β1λ1

β1
S(y1;K(ξw)) is the strategy-implied estimator. It remains to show that

θ̂imp corresponds to some LASSO estimate of θ̃. If we define

θ̂lasso(y1; ξw) := argmin
θ

{
1

2

∣∣∣∣y1 − β1θ

1− β1λ1

∣∣∣∣2 + σ2
u|θ|

(1− β1λ1)2ξw

}
, (A51)

then by Equations (2), (3), and (5), we can show that

θ̂lasso =
1− β1λ1

β1

[y1 − sign(y1)K(ξw)]1|y1|>K(ξw) =
1− β1λ1

β1

S(y1;K(ξw)) = θ̂imp. (A52)

This proves that the robust strategy (28) is a LASSO strategy since we have

Z2,n(y1;α,K(ξw)) =
α(1− β2λ2)

λ2(N + 1)
· θ̂lasso(y1; ξw). (A53)

We can further define a LASSO estimate of ṽ as

v̂lasso(y1; ξw) := argmin
v

{
1

2
|y1 − β1v|2 +

σ2
u

ξw
|v|

}
=

1

β1

S(y1;κσu). (A54)

Since κaσu < K(ξw) =
κaσu

1−β1λ1
, it follows that θ̂lasso = (v̂lasso − λ1y1)1|y1|>K(ξw) and thus

Z2,n(y1;α,K(ξw)) =
α(1− β2λ2)(v̂

lasso − λ1y1)1|y1|>K(ξw)

λ2(N + 1)
. (A55)

Eq. (A53) and Eq. (A55) together prove Eq. (29) in Theorem 3.
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A.8 Proof of Proposition 2

When α = 1, a fixed Laplacian-Gaussian mixture prior LG(α, ξ) reduces to a pure Laplace
prior L(0, ξ). Conditional on this prior and the order flow y1 = β1(ṽ − p0) + ũ1 with p0 = 0,

the posterior distribution f(v|y1) is equal to f(y1|v)f(v)/f(y1) by Bayes’ rule and hence the

maximum a posteriori (MAP) estimate of ṽ is given by

v̂map = argmax
v

exp

[
−(y1 − β1v)

2

2σ2
u

− |v|
ξ

]
= argmin

v

{
|y1 − β1v|2

2
+

σ2
u

ξ
|v|

}
. (A56)

When ξ = ξw, Eq. (A56) becomes the same LASSO objective function (30) that defines v̂lasso.

The first order condition of (A56) is y1(v) = β1v + sign(v)κ(ξ)σu, where κ(ξ) := σu/(β1ξ).

Inverting this function y1(v) yields the MAP estimator which has a learning threshold κσu.

When ξ = ξw, it coincides with the soft-thresholding expression of v̂lasso in Eq. (30):

v̂map(y1;α = 1, ξw) =
1

β1

[y1 − sign(y1)κσu]1|y1|>κσu =
1

β1

S(y1;κσu) = v̂lasso(y1; ξw). (A57)

(A56) and (A57) demonstrate the statistical interpretation of LASSO by Tibshirani (1996).

Figure 13 plots the posterior distribution f(v|y1;α = 1, ξ) for three values of y1 with σu = 1.

It illustrates the effect of a sharply peaked Laplace prior on suppressing nonzero estimates.

When y1 is at or below the learning threshold κσu, the posterior remains sharply peaked at

the origin such that v̂map = 0. When y1 exceeds the threshold κσu, the posterior mode shifts

to the right such that v̂map > 0. The l1 penalty term in LASSO has the same effect.
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Figure 13. The posterior distributions f(v|y1;α = 1, ξ) for y1 = 0.5κ, y1 = κ, and y1 = 1.5κ.
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Now consider an otherwise identical economy where arbitrageurs naively use the MAP

rule to estimate ṽ based on a pure Laplace prior ṽ ∼ L(0, ξw). We can easily show that their

heuristic feedback trading strategy coincides with the robust LASSO strategy (28):

Zmap
2,n (y1;α = 1, ξw) =

(1− β2λ2)

λ2(N + 1)
[v̂map(y1;α = 1, ξw)− λ1y1]1|y1|>K(ξw)

= Z2,n(y1;α = 1, K(ξw)) =
(1− β1λ1)(1− β2λ2)

β1λ2(N + 1)
[y1 − sign(y1)K(ξw)]1|y1|>K(ξw), (A58)

where the term 1|y1|>K(ξw) is imposed to guarantee the practice of positive feedback trading.

Eq. (A58) demonstrates the observational equivalence between the heuristic MAP strategy

Zmap
2,n (y1;α = 1, ξw) and the robust LASSO strategy Z2,n(y1;α = 1, ξw).
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Figure 14. Left: the LASSO strategy Z2,n(y1) and the MAP strategy Zmap
2,n (y1) when

α = 0.5. Right: the trading threshold of MAP strategy versus α.

For any α ∈ (0, 1), this observational equivalence fails because the MAP estimate becomes

v̂map := argmax
v

[
α

2ξ
exp

(
−(y1 − β1v)

2

2σ2
u

− |v|
ξ

)
+

1− α√
2πσ2

v

exp

(
−(y1 − β1v)

2

2σ2
u

− v2

2σ2
v

)]
.

which is always different from the LASSO estimate v̂lasso. There is no analytical solution to

this problem, but we can numerically determine the MAP estimator and the corresponding

feedback trading strategy. A numerical example is shown in Figure 14 (left). When α ∈ (0, 1),

the heuristic MAP strategy has a trading threshold always larger than that of the robust

LASSO strategy; see the right panel of Figure 14. We find that when α is sufficiently small,

the MAP strategy Zmap
2,n (y1;α, ξw) becomes discontinuous at its trading thresholds. This can

also be seen from Figure 3 in the main text. Unlike the robust LASSO strategy which scales
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linearly with α, the MAP strategy has the same asymptotes as they are independent of α.

All the above results show the significant discrepancy between these two strategies.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fa
ls

e 
Po

si
tiv

e 
R

at
e

Robust strategy

MAP strategy

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fa
ls

e 
N

eg
at

iv
e 

R
at

e

Robust strategy

MAP strategy

Figure 15. Left: false positive rates for the robust LASSO strategy Z2,n and the heuristic
MAP strategy Zmap

2,n . Right: false positive rates for both types of strategies.

Next we compare the performances of the two strategies over the entire range of α ∈ (0, 1).

The MAP strategy is not Bayesian rational as it tends to produce the all-or-none responses:

whenever the order flow y1 exceeds its trading thresholds, the MAP strategy treats y1 as if

it contains a Laplacian signal for sure and thus commits to the maximal trading intensity.

This feature of binary classification stems from the heuristic MAP rule as it simply picks up

the posterior mode and brutally ignores all the remaining posterior information. When the

frequency of fat-tail shocks declines (i.e., as α decreases), the MAP strategy uses a larger

threshold to achieve its binary classification. In contrast, the robust LASSO strategy does

not alter the threshold since K(ξw) is independent of α. Of course, a wider inaction zone

implies a lower rate of Type I errors (false positives), as shown in Figure 15. In terms of

Type II errors (false negatives), the two strategies are almost identical in performance.

The false positive rate can only reflect the accuracy in the direction of responses, not in

the magnitude of responses. The MAP strategy may overly trade given its all-or-none feature.

Figure 4 shows the expected total trading profits at α = 0.5 under three types of strategies:

the robust LASSO strategy Z2,n(y1;α,K(ξw)), the optimal strategy Zo
2,n(y1;α, ξw), and the

heuristic MAP strategy Zmap
2,n (y1;α, ξw). One can see that for a wide range of ξw (relative to

the true prior ξv), the LASSO strategy is much more profitable than the MAP strategy. The

MAP strategy can easily lose money when it has estimate bias or faces intense competition.
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A.9 Proof of Theorem 4

In the symmetric equilibrium of Theorem 1 where arbitrageurs follow the same optimal

strategy Zo
2,n(ỹ1;α, ξw), their expected total profits under the physical measure is given by

E
[∑N

n=1
(ṽ − p̃2)Z

o
2,n(ỹ1;α, ξw)

]
= E

[
N

(
ṽ − λ1ỹ1 − λ2β2(ṽ − λ1ỹ1)−

∑N

n=1
λ2Z

o
2,n

)
Zo

2,n

]
= (1− β2λ2)

2E

[
N(N + 1)θ̃ −N2θ̂(ỹ1;α, ξw)

(N + 1)
· θ̂(ỹ1;α, ξw)
(N + 1)λ2

]

= (1− β2λ2)
2
NE

[
θ̂(ỹ1;α, ξv)θ̂(ỹ1;α, ξw)

]
(N + 1)λ2

− (1− β2λ2)
2
N2E

[
θ̂(ỹ1;α, ξw)

2
]

(N + 1)2λ2

, (A59)

where we have used Eq. (19) as well as the following property

E
[
θ̃ · θ̂(ỹ1;α, ξw)

]
= E

[
E
[
θ̃
∣∣ỹ1;α, ξv] θ̂(ỹ1;α, ξw)] = E

[
θ̂(ỹ1;α, ξv) · θ̂(ỹ1;α, ξw)

]
. (A60)

When ξw = ξv (unbiased case), it is easy to verify that

lim
N→∞

E
[∑N

n=1
(ṽ − p̃2)Z

o
2,n|ξw = ξv

]
= lim

N→∞

N(1− β2λ2)
2

λ2(N + 1)2
E[θ̂(ỹ1;α, ξv)

2] = 0. (A61)

Arbitrageurs eventually compete away their aggregate trading profit if ξw = ξv and N → ∞.

In the symmetric equilibrium of Theorem 2 where arbitrageurs use the same robust

LASSO strategy Z2,n(ỹ1;α,K(ξw)), the expectation of their total profit is derived to be

E
[∑N

n=1
(ṽ − p̃2)Z2,n(ỹ1;α,K(ξw))

]
= α(1− β2λ2)

2E

[
N(N + 1)(ṽ − λ1ỹ1)− αN2θ̂lasso(ỹ1; ξw)

(N + 1)
· θ̂

lasso(ỹ1; ξw)

(N + 1)λ2

]

= α(1− β2λ2)
2
E
[
N(N + 1)(θ̃ − αθ̂lasso + αθ̂lasso)θ̂lasso − αN2(θ̂lasso)2

]
(N + 1)2λ2

= α(1− β2λ2)
2
NE

[
(θ̂(ỹ1;α, ξv)− αθ̂lasso)θ̂lasso

]
(N + 1)λ2

+ α2(1− β2λ2)
2
NE

[
(θ̂lasso)2

]
(N + 1)2λ2

, (A62)

where we have used Eq. (29) and the following result similar to (A60),

E
[
θ̃ · θ̂lasso(ỹ1;α, ξw)

]
= E

[
E
[
θ̃
∣∣ỹ1;α, ξv] θ̂lasso] = E

[
θ̂(ỹ1;α, ξv) · θ̂lasso(ỹ1;α, ξw)

]
. (A63)
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Given the expressions of (19), (20), (30), and (31), one can further verify that

E
[
[θ̂(ỹ1;α, ξv)− αθ̂lasso]θ̂lasso

]
= αE

[
[v̂(ỹ1;α = 1, ξv)− v̂lasso]θ̂lasso

]
, (A64)

where we have use the scaling property θ̂(ỹ1;α, ξv) = α(v̂[ỹ1;α = 1, ξv)−λ1ỹ1] and the result

that θ̂lasso = (v̂lasso − λ1ỹ1)1|ỹ1|>K must satisfy (v̂lasso − λ1ỹ1) · θ̂lasso = (θ̂lasso)2. In the limit

N → ∞, we find that the expected total profit Eq. (A62) is strictly positive:

lim
N→∞

E

[
N∑

n=1

(ṽ − p̃2)Z2,n

]
=

α2(1− β2λ2)
2

λ2

E
[
[v̂(ỹ1; ξv)− v̂lasso(ỹ1; ξw)] · θ̂lasso(ỹ1; ξw)

]
> 0.

(A65)

Here, we have used the notation v̂(ỹ1; ξv) to stand for v̂(ỹ1;α = 1, ξv). When 0 < ξw ≤ ξv

and α ∈ (0, 1], one can verify that v̂(ỹ1; ξv) > v̂lasso(ỹ1; ξw) for y1 > 0 and by symmetry, we

also have v̂(ỹ1; ξv) < v̂lasso(ỹ1; ξw) for y1 < 0. This means that v̂(ỹ1; ξv) − v̂lasso(ỹ1; ξw) and

θ̂lasso(ỹ1; ξw) have the same sign for |ỹ1| > K(ξw), thus proving the positive sign of Eq. (A65)

when 0 < ξw ≤ ξv. Because competition drives down profits, it also implies that Eq. (A62)

is strictly positive for any N ≥ 1 when 0 < ξw ≤ ξv .

We have used Monte-Carlo simulations to verify the analytical results in Theorem 4. It

is also of interest to compare these two strategies in other performance measures (Table 1).

Table 1. Performance comparison based on Monte-Carlo simulations with α = 1.
.

ξw = ξv, N = 10 Optimal Zo
2,n(y1; ξw) Robust Z2,n(y1;K(ξw))

Gain-Loss Ratio 0.9545 1.3403

Profit Std Dev 0.1882 0.1107

Profit Skewness 3.9425 8.3697

Win-Loss Ratio 1.0011 1.5778

Ave Profit Per Trade 0.0014 0.1101

ξw = 0.9ξv, N = 10 Optimal Zo
2,n(y1; ξw) Robust Z2,n(y1;K(ξw))

Gain-Loss Ratio 0.9959 1.1266

Profit Std Dev 0.1936 0.1503

Profit Skewness 5.0032 23.724

Win-Loss Ratio 1.0343 1.1593

Ave Profit Per Trade -0.0024 0.2694
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A.10 Proof of Proposition 3

When N → ∞, if there is ever a finite mass, denoted ϕ ∈ (0, 1], of arbitrageurs con-

strained by model risk as in Theorem 2, then the asset price at t = 2 will be

p̃2 = λ1ỹ1 + λ2

[
β2(ṽ − λ1ỹ1) +

(1−ϕ)N∑
n=1

Zo
2,n(ỹ1;α, ξw) +

ϕN∑
n=1

Z2,n(ỹ1;α,K(ξw)) + ũ2

]

= λ1ỹ1 + λ2

[
β2(ṽ − λ1ỹ1) +

N∑
n=1

Zo
2,n(ỹ1;α, ξw) +

ϕN∑
n=1

(Z2,n − Zo
2,n) + ũ2

]
→ β2λ2ṽ + (1− β2λ2)

(
v̂(ỹ1;α, ξw) + ϕ

[
αθ̂lasso(ỹ1; ξw)− θ̂(ỹ1;α, ξw)

])
+ λ2ũ2.

We will keep using v̂(ỹ1; ξ) to stand for v̂(ỹ1;α = 1, ξ) and use θ̂(ỹ1; ξ) for θ̂(ỹ1;α = 1, ξ).

The expectation of p̃2 − ṽ conditional on the price history {p̃1 = λ1ỹ1, p0} is

lim
N→∞

E[p̃2 − ṽ|p̃1, p0] = lim
N→∞

E[λ1ỹ1 + λ2ỹ2 − ṽ|ỹ1]

= (1− β2λ2) (v̂(ỹ1;α, ξw)− E[ṽ|ỹ1;α, ξv]) + ϕ(1− β2λ2)
[
αθ̂lasso(ỹ1; ξw)− θ̂(ỹ1;α, ξw)

]
= (1− β2λ2) (v̂(ỹ1;α, ξw)− v̂(ỹ1;α, ξv)) + ϕ(1− β2λ2)

[
αθ̂lasso(ỹ1; ξw)− θ̂(ỹ1;α, ξw)

]
= (1− β2λ2)

(
[v̂(ỹ1;α, ξw)− v̂(ỹ1;α, ξv)] + αϕ

[
θ̂lasso(ỹ1; ξw)− θ̂(ỹ1; ξw)

])
= α(1− β2λ2)

(
[v̂(ỹ1; ξw)− v̂(ỹ1; ξv)] + ϕ

[
θ̂lasso(ỹ1; ξw)− θ̂(ỹ1; ξw)

])
. (A66)

In deriving Eq. (A66), we have used the scaling property that θ̂(ỹ1;α, ξw) = αθ̂(ỹ1;α = 1, ξw)

and the observation that v̂(ỹ1;α, ξw) − v̂(ỹ1;α, ξv) = α [v̂(ỹ1;α = 1, ξw)− v̂(ỹ1;α = 1, ξv)],

which follows from the expression of (20). Eq. (A66) is not equal to zero almost everywhere

(for almost any realizations of ỹ1), unless both ξw = ξv and ϕ = 0 hold simultaneously.

Note that the economy in either Theorem 1 or Theorem 2 can hold an infinite number of

arbitrageurs when the following inequality holds: α + (1 − α)β1λ1 < 2β1
√
λ1λ2

1−β2λ2
. This is from

the equilibrium condition (23) in Proposition 1 by taking the limit N → ∞.

Figure 16 plots the aggregate trading profiles of arbitrageurs when they follow the robust

LASSO strategy. The red solid line is for the homogeneous case when they use identical

trading thresholds K(ξv). The black dash-dot line is for the heterogeneous case when they

use different trading thresholds K(ξw,n) for n = 1, ..., N . It has a narrower no-trade region

determined by the most optimistic trader whose effective prior is ξ∗w := max{ξw,1, ..., ξw,N}.
We impose 1

N

∑N
n=1 ξ

−1
w,n = ξ−1

v so that the two aggregate trading strategies converge.
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Figure 16. Comparison of the robust strategy Z2,n(y1;α,K(ξv)) homogeneous for each n
and the population average of the robust strategy over traders with heterogeneous thresholds,
1
N

∑N
n=1 Z2,n(y1;α,K(ξw,n)), where

1
N

∑N
n=1 ξ

−1
w,n = ξ−1

v is imposed for a fair comparison.

A.11 Proof Proposition 5

Consider J ≥ 1 stocks whose liquidation values have independent Laplacian-Gaussian

mixture distributions, ṽj ∼ LG(αj, ξj), for j = 1, ..., J . Suppose arbitrageurs solve the same

problem as in Theorem 2 for each asset based on their uncertain fat-tail prior ṽj ∼ LG(αj, ξ̃j).

When (C1)-(C3) hold for each asset, their robust strategy at t = 2 is similar to Eq. (28):

Z2,n(y1,j;αj, ξw,j) =
αj(1− β1,jλ1,j)(1− β2,jλ2,j)

β1,jλ2,j(N + 1)
[y1,j − sign(y1,j)Kj(ξw,j)]1|y1,j |>Kj(ξw,j) (A67)

which is a soft-thresholding function of y1,j. With p1,j = 0 and p1,j = λ1,jy1,j, we can define

the LASSO estimates θ̂lassoj (p1,j; ξw,j) of the pricing error for each asset j ∈ {1, ..., J} as

θ̂lassoj := argmin
θj

1

2

∣∣∣∣p1,j − β1,jλ1,jθj
1− β1,jλ1,j

∣∣∣∣2 + (
λ1,jσu,j

1− β1,jλ1,j

)2 |θj|
ξw,j

=
1− β1,jλ1,j

β1,jλ1,j

S(p1,j;λ1,jKj).

(A68)

By Theorem 3, the robust strategy for each asset j ∈ {1, ..., J} is a LASSO strategy:

Z2,n(p1,j;αj, ξw,j) =
αj(1− β2,jλ2,j)

λ2,j(N + 1)
θ̂lassoj (p1,j; ξw,j). (A69)

By proposition 4, if we consider the uncertainty of α̃j, we can simply replace αj by its prior

mean αj in the above equation and the new LASSO strategy will be Z2,n(p1,j;αj, ξw,j).
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A.12 Proof of Proposition 6

All other things being equal, we replace Eq. (10) by the mixture Gaussian prior below:

f(v;α, ζ) =
α√
2πζ2

exp

(
− v2

2ζ2

)
+

1− α√
2πσ2

v

exp

(
− v2

2σ2
v

)
. (A70)

Arbitrageurs know α but are uncertain about the volatility ζ of the Gaussian shocks. Since

Bayesian learning will maintain the simple scaling property about α, it suffices to consider

the case that α = 1. Each arbitrageur’s prior in this case becomes ṽ ∼ N (0, ζ̃2), where

ζ̃ ∈ [ζL, ζH ]. For any fixed Gaussian prior ζ̃ = ζ, arbitrageurs believe that ỹ1 = β1ṽ + ũ1 ∼
N (0, (β1ζ)

2 + σ2
u). Their posterior belief about ṽ conditional on ỹ1 is

f(v|y1) =
f(y1|v)f(v; ζ)

f(y1)
=

1

2πζσuf(y1)
exp

[
−(y1 − β1v)

2

2σ2
u

− v2

2ζ2

]
. (A71)

By projection theorem, they will use the linear estimator under the Gaussian prior,

v̂ridge(y1; ζ) = E[ṽ|y1, ζ] =
β1ζ

2y1
(β1ζ)2 + σ2

u

=
y1

β1 + σ2
u/(β1ζ2)

, (A72)

which is the simplest version of ridge regression (Hastie et al. (2009)) with an l2 norm penalty.

For any given ζ, the optimal strategy of arbitrageurs is always a linear function of y1:

Zo
2,n(y1; ζ) =

1− β2λ2

λ2(N + 1)
(v̂ridge − λ1y1) =

β1(1− β1λ1)ζ
2 − λ1σ

2
u

(β1ζ)2 + σ2
u

· 1− β2λ2

λ2(N + 1)
y1. (A73)

Any uncertainty about the prior ζ only changes the slope of this linear strategy. Therefore,

the robust strategy should be linear under the max-min choice criteria. It is easy to verify

that Zo
2,n(y1; ζ = σv) = 0 since the price is supposed to be efficient when ζ = σv. Hence, if

ζL ≤ σv ≤ ζH , then Zo
2,n(y1; ζH) is upward sloping and Zo

2,n(y1; ζL) is downward sloping such

that the max-min strategy is no trade at all. If σv < ζL ≤ ζH , then the max-min strategy is

the upward sloping linear strategy Zo
2,n(y1; ζL). If ζL ≤ ζH < σv, then the max-min strategy

is the downward-sloping linear strategy Zo
2,n(y1; ζH). In sum, the max-min robust strategy is

Z2,n(y1; ζ) =


Zo

2,n(y1; ζL), if σv < ζL ≤ ζH ,

0, if ζL ≤ σv ≤ ζH ,

Zo
2,n(y1; ζH), if ζL ≤ ζH < σv.

(A74)

The above strategy is always a linear function of y1, without any trading threshold.
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